

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyhrs v0.0.dev126

 Welcome to the pyhrs documentation! pyhrs is a package for
the reduction and analysis of data from the High Resolution
Spectrograph on the Southern African Large Telescope

Documentation

pyhrs is an ffiliated package for the AstroPy package. The documentation for
this package is here:

	HRS Data Reduction (pyhrs)
	Introduction

	Processing your data

	Processing HRS Data
	Processing Data frames

	Processing Calibration Frames

	Finding Orders
	Normalizing a flat field frame

	Creating an order frame

	Wavelength Calibration
	HRSModel

	Calibrating a single order

	Calibrating an arc

	Extracting Spectra

	PyHRS
	HRSModel

	hrs_process

	HRSOrder

	hrsextract

	HRStools

	pyhrs Module

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

HRS Data Reduction (pyhrs)

Introduction

Note

pyhrs works only with astropy version 1.0.0 or later. It also requires ccdproc version 0.3.0 or later.

The pyhrs package provides steps for reducing and extracting data from the High Resolution Spectrograph on the Southern African Large Telescope. The package includes the following sub-packages to help with the processing and reduction of the data:

	A class describing a single HRS order, HRSOrder, that includes position, wavelength, and flux properties

	A class describing the HRS spectrograph, HRSModel, to allow for accurate modeling of the HRS Spectrograph

	Raw data can be processed using hrsprocess for both the blue and red arms.

	Orders can be identified in the images using create_orderframe

	wavelength_calibrate_arc can be used to calculate the wavelength calibration.

Once the data are reduced and calibrated, extraction of the object spectra can proceed based on the prefered method of the user.

Processing your data

For more information about how to process your data, please check out

	Processing HRS Data

	Finding Orders

	Wavelength Calibration

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

Processing HRS Data

hrsprocess includes steps for the basic CCD processing necessary for HRS data.
The code provides a wrapper for tasks from ccdproc to provide specific reductions
for HRS data. In addition, it provides several functions for creating calibration
frames for the reduction of HRS data.

Note

hrsprcess expects files to follow the SALT naming conventions

Processing Data frames

Data frames can be process using the tasks blue_process and red_process. The user
can select from several options included in these programs, but certain aspects are hard
wired to provide convenient functions for data reductions. For example, to process blue
data:

>>> from pyhrs.hrsprocess import blue_process
>>> ccd = blue_process('H201411170015.fits', masterbias=masterbias)

This will return an ccdproc.CCDData object that has had the overscan corrected,
trimmed, gain corrected, had the master bias subtracted, and positioned
such that the orders increase from the bottom to the top and the dispersion goes from
the left to the right. Flatfielding and calibration from a spectrophotometric standard
will only be applied in later steps.

Convenience functions for Processing Science Data:

	blue_process: process data from the HRS blue camera

	red_process: process data from the HRS red camera

	hrs_process: convenience function for processing HRS data

The functions all pass appropriate parameters to ccd_process. This tasks
wraps functions from ccdproc for processing CCD images. ccd_process has a number
of steps, which are all optional, that include overscan subtraction, trimming, creating
error frames, masking, gain correction, and subtracting a master bias.

Processing Calibration Frames

Calibration frames can also be created using several convenience functions. For example,
passing a list of filenames to create_masterbias will process the data and combine them
to create the master bias frame.

>>> from pyhrs.hrsprocess import create_masterbias
>>> masterbias = create_masterbias(['H201411170015.fits', 'H201411170016.fits']

This will process each frame and return a masterbias ccdproc.CCDData object.

In addition, masterflats can be produced using:

>>> from pyhrs.hrsprocess import create_masterflat
>>> masterflat = create_masterflat(['H201411170020.fits', 'H201411170021.fits', 'H201411100022.fits']

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

Finding Orders

A critical step to the reduction of HRS data is finding orders in the images.
Typically, images of flat fields or of a bright object can be used to identify
orders in the frame. The data must first be processed. Unfortunately, a
truly perfect data set for the identification of the orders is rarely
available as the response function across the CCD can widely vary.

Below we outline some tasks that can be used for identifying orders in HRS
images and the steps that are used to process the data to make the
identification possible.

Normalizing a flat field frame

Due to the changing response function across the CCD, a fiber flat image can show
significant vignetting in both the vertical and horizontal direction. To remove
the vignetting in the vertical direction, the normalize_image task can be used.

The normalize_image task fits a function to a fiber flat image after masking the
image. Either a 1D or 2D function can be fit to the image, and the fitting function should
be specified by the user. For the best performance, it is best to either apply an already
existing order frame or to smooth the image and mask areas of low response.

Here is an example of the steps needed to normalize an image:

>>> from astropy.io import fits
>>> from astropy import modeling as mod
>>> from scipy import ndimage as nd
>>> from pyhrs import normalize_image

>>> hdu = fits.open('HFLAT.fits')
>>> image = nd.filters.maximum_filter(image, 10)
>>> mask = (image > 500)
>>> norm = normalize_image(image, mod.models.Legendre1D(10), mask=mask)
>>> norm[norm<10000] = 0

This will produce a ndarry where good areas all have the same value and bad areas
will have values set to zero. This significantly simplifies the process of identifying
orders in the image. However, orders at the very top of the image with little or no signal
will still be difficult to detect.

Creating an order frame

The next step is to create an order frame. An order frame is defined as an image where each pixel
associated with an order is identified and labeled with that order. To produce the order frame,
an initial detection kernal (based on a user input) is convolved with a single column in the image.
The first maximum identified is assocatied with the initial input order given by the user. To
identify the full 2D shape of the order, all pixels above a certain threshold and connected are
identified. These pixels are then given the value of the initial order. Once the order
is identified, all pixels associated with this order are set to zero. The detection
kernal is then updated based on the 1D shape of this order, the order is incremented, and the
process is repeated until all orders are identified in the frame.

All of these steps are accomplished running the create_orderframe task. An example of running
this task is the follow:

>>> norm[norm>500] = 500
>>> xc = int(norm.shape[0]/2)
>>> detect_kern = norm[30:110, xc]
>>> frame = create_orderframe(norm, 84, xc, detect_kern, y_start=30, y_limit=4050)

This will produce the order frame for the blue arm in medium resolution mode. It will identify all orders
up to the limit of y-position of 4050. For the red arm, the first order is 53 for the medium resolution
mode.

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

Wavelength Calibration

Wavelength calibration requires the identification of known lines in a
spectrum of an arc to determine the transformation between pixel space
and wavelength.

HRSModel

HRSModel is a class for producing synthetic HRS spectra. HRSModel is based
on the PySpectrograph.Spectrograph class. It includes
a simple model for both arms that is based on the instrument confirguration and the spectrograph
equation. After adjusting for offsets in the fiber position relative to the CCD, the model
can return an approximation for the transformation that is accurate to within a few pixels.

The residuals between the model and the actual solution though are well described by a
quadratic equation. This quadratic does slowly vary accross the orders and is
different between the two arms. Due to the change in the fiber position between
the different resolutions, this quadratic can change between the different configurations
as well.

For these reasons, the initial guess for the wavelength solution is based on
HRSModel plus a quadratic correction. The correction can either be
calculated manual or by automatically fitting a single row of an order.

Calibrating a single order

To calibrate a single order, the following steps are carried out:

	Curvature due to the optical distortion is removed from the spectra and
a square representation of the 2D spectra is created. Only integer
shifts are applied to the data

	A model of the spectrograph is created based on the order, camera, and
xpos offset that are supplied. A small correction described by a quadratic
equation is added to the transformation calculated from the model.

	In each row of the data, peaks are extracted and matched with a
line in the atlas of wavelengths that is provided. Due to the accuracy
of the initial guess, lines are matched to within an angstrom and any
line that might be blended is rejected.

	Once the first set of peaks and lines are matched up, a new solution
is calculated for the given row. Then the processes of matching
lines and determining a wavelength solution is repeated using this new
solution. The best result from each line is saved.

	Using all of the matched lines from all lines, a ‘best’ solution is
determined. Everything but the zeroth order parameter of the fit
is fixed to a slowly varying value based on the overall solution to all
lines. See fit_solution for more details.

	Based on the best solution found, the process is repeated for each
row but only determing the zeropoint.

	Based on the solution found, a wavelength is assigned to each pixel

All of these steps are carried out by wavelength_calibrate_order. In
the end, this task returns an HRSOrder object with wavelengths correspond
to every pixel where a good solution was found. In addition, it also returns
the x-position, wavelength, and solution for the initial row.

Calibrating an arc

For full automated calibration of an arc, wavelength_calibrate_arc can be
used. In this task, it applies wavelength_calibrate_order to each
of the orders in the frame. It uses pyhrs.HRSModel for the first guess but takes
the quadratic correction from the solution of the nearest order. It starts
with the initial order and the first row is also set by the user.

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

Processing HRS Data

hrsprocess includes steps for the basic CCD processing necessary for HRS data.
The code provides a wrapper for tasks from ccdproc to provide specific reductions
for HRS data. In addition, it provides several functions for creating calibration
frames for the reduction of HRS data.

Note

hrsprcess expects files to follow the SALT naming conventions

Processing Data frames

Data frames can be process using the tasks blue_process and red_process. The user
can select from several options included in these programs, but certain aspects are hard
wired to provide convenient functions for data reductions. For example, to process blue
data:

>>> from pyhrs.hrsprocess import blue_process
>>> ccd = blue_process('H201411170015.fits', masterbias=masterbias)

This will return an ccdproc.CCDData object that has had the overscan corrected,
trimmed, gain corrected, had the master bias subtracted, and positioned
such that the orders increase from the bottom to the top and the dispersion goes from
the left to the right. Flatfielding and calibration from a spectrophotometric standard
will only be applied in later steps.

Convenience functions for Processing Science Data:

	blue_process: process data from the HRS blue camera

	red_process: process data from the HRS red camera

	hrs_process: convenience function for processing HRS data

The functions all pass appropriate parameters to ccd_process. This tasks
wraps functions from ccdproc for processing CCD images. ccd_process has a number
of steps, which are all optional, that include overscan subtraction, trimming, creating
error frames, masking, gain correction, and subtracting a master bias.

Processing Calibration Frames

Calibration frames can also be created using several convenience functions. For example,
passing a list of filenames to create_masterbias will process the data and combine them
to create the master bias frame.

>>> from pyhrs.hrsprocess import create_masterbias
>>> masterbias = create_masterbias(['H201411170015.fits', 'H201411170016.fits']

This will process each frame and return a masterbias ccdproc.CCDData object.

In addition, masterflats can be produced using:

>>> from pyhrs.hrsprocess import create_masterflat
>>> masterflat = create_masterflat(['H201411170020.fits', 'H201411170021.fits', 'H201411100022.fits']

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

Finding Orders

A critical step to the reduction of HRS data is finding orders in the images.
Typically, images of flat fields or of a bright object can be used to identify
orders in the frame. The data must first be processed. Unfortunately, a
truly perfect data set for the identification of the orders is rarely
available as the response function across the CCD can widely vary.

Below we outline some tasks that can be used for identifying orders in HRS
images and the steps that are used to process the data to make the
identification possible.

Normalizing a flat field frame

Due to the changing response function across the CCD, a fiber flat image can show
significant vignetting in both the vertical and horizontal direction. To remove
the vignetting in the vertical direction, the normalize_image task can be used.

The normalize_image task fits a function to a fiber flat image after masking the
image. Either a 1D or 2D function can be fit to the image, and the fitting function should
be specified by the user. For the best performance, it is best to either apply an already
existing order frame or to smooth the image and mask areas of low response.

Here is an example of the steps needed to normalize an image:

>>> from astropy.io import fits
>>> from astropy import modeling as mod
>>> from scipy import ndimage as nd
>>> from pyhrs import normalize_image

>>> hdu = fits.open('HFLAT.fits')
>>> image = nd.filters.maximum_filter(image, 10)
>>> mask = (image > 500)
>>> norm = normalize_image(image, mod.models.Legendre1D(10), mask=mask)
>>> norm[norm<10000] = 0

This will produce a ndarry where good areas all have the same value and bad areas
will have values set to zero. This significantly simplifies the process of identifying
orders in the image. However, orders at the very top of the image with little or no signal
will still be difficult to detect.

Creating an order frame

The next step is to create an order frame. An order frame is defined as an image where each pixel
associated with an order is identified and labeled with that order. To produce the order frame,
an initial detection kernal (based on a user input) is convolved with a single column in the image.
The first maximum identified is assocatied with the initial input order given by the user. To
identify the full 2D shape of the order, all pixels above a certain threshold and connected are
identified. These pixels are then given the value of the initial order. Once the order
is identified, all pixels associated with this order are set to zero. The detection
kernal is then updated based on the 1D shape of this order, the order is incremented, and the
process is repeated until all orders are identified in the frame.

All of these steps are accomplished running the create_orderframe task. An example of running
this task is the follow:

>>> norm[norm>500] = 500
>>> xc = int(norm.shape[0]/2)
>>> detect_kern = norm[30:110, xc]
>>> frame = create_orderframe(norm, 84, xc, detect_kern, y_start=30, y_limit=4050)

This will produce the order frame for the blue arm in medium resolution mode. It will identify all orders
up to the limit of y-position of 4050. For the red arm, the first order is 53 for the medium resolution
mode.

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

Wavelength Calibration

Wavelength calibration requires the identification of known lines in a
spectrum of an arc to determine the transformation between pixel space
and wavelength.

HRSModel

HRSModel is a class for producing synthetic HRS spectra. HRSModel is based
on the PySpectrograph.Spectrograph class. It includes
a simple model for both arms that is based on the instrument confirguration and the spectrograph
equation. After adjusting for offsets in the fiber position relative to the CCD, the model
can return an approximation for the transformation that is accurate to within a few pixels.

The residuals between the model and the actual solution though are well described by a
quadratic equation. This quadratic does slowly vary accross the orders and is
different between the two arms. Due to the change in the fiber position between
the different resolutions, this quadratic can change between the different configurations
as well.

For these reasons, the initial guess for the wavelength solution is based on
HRSModel plus a quadratic correction. The correction can either be
calculated manual or by automatically fitting a single row of an order.

Calibrating a single order

To calibrate a single order, the following steps are carried out:

	Curvature due to the optical distortion is removed from the spectra and
a square representation of the 2D spectra is created. Only integer
shifts are applied to the data

	A model of the spectrograph is created based on the order, camera, and
xpos offset that are supplied. A small correction described by a quadratic
equation is added to the transformation calculated from the model.

	In each row of the data, peaks are extracted and matched with a
line in the atlas of wavelengths that is provided. Due to the accuracy
of the initial guess, lines are matched to within an angstrom and any
line that might be blended is rejected.

	Once the first set of peaks and lines are matched up, a new solution
is calculated for the given row. Then the processes of matching
lines and determining a wavelength solution is repeated using this new
solution. The best result from each line is saved.

	Using all of the matched lines from all lines, a ‘best’ solution is
determined. Everything but the zeroth order parameter of the fit
is fixed to a slowly varying value based on the overall solution to all
lines. See fit_solution for more details.

	Based on the best solution found, the process is repeated for each
row but only determing the zeropoint.

	Based on the solution found, a wavelength is assigned to each pixel

All of these steps are carried out by wavelength_calibrate_order. In
the end, this task returns an HRSOrder object with wavelengths correspond
to every pixel where a good solution was found. In addition, it also returns
the x-position, wavelength, and solution for the initial row.

Calibrating an arc

For full automated calibration of an arc, wavelength_calibrate_arc can be
used. In this task, it applies wavelength_calibrate_order to each
of the orders in the frame. It uses pyhrs.HRSModel for the first guess but takes
the quadratic correction from the solution of the nearest order. It starts
with the initial order and the first row is also set by the user.

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

Extracting Spectra

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

PyHRS

The PyHRS package is for the reduction of data from the High Resolution Spectrograph
on the Southern African Large Telescope. The goals of the package are
to provide tools to be able to produce scientific quality reductions for the
the low, medium, and high resolution modes for HRS and to prepare data
for more specialized code for the reduction of high stability observations.

The package includes the following classes and functions:
- HRSModel
- hrsprocess
- HRSOrder
- hrstools

HRSModel

HRSModel is a class for producing synthetic HRS spectra. HRSModel is based
on the PySpectrograph.Spectrograph class. It only includes
a simple model based on the instrument confirguration and the spectrograph
equation.

hrs_process

hrsprocess includes steps for the basic CCD processing necessary for
HRS data. It also includes steps necessary for creating calibration
frames.

HRSOrder

HRSOrder is a class descirbe a single order from an HRS image. The order then
has different tools for identifying regions, extracting orders, and defining
properties of different orders such as wavelengths and calibrations.

hrsextract

hrsextract includes all steps necessary to extract a single, one-dimensional
HRS spectrum.

HRStools

HRStools includes generally utilies used across different functions and classes.

Reference/API

pyhrs Module

pyhrs is a package for reducing data from the High Resolution Spectrograph
on the Southern African Large Telescope

	background(b_arr[,niter])
	Determine the background for an array

	blue_process(infile[,masterbias,error,...])
	Process a blue frame

	calc_weights(x,y,m[,yerr])
	Calculate weights for each value based on deviation from best fit model

	ccd_process(ccd[,oscan,trim,error,...])
	Perform basic processing on ccd data.

	create_masterbias(image_list)
	Create a master bias frame from a list of images

	create_masterflat(image_list[,masterbias])
	Create a master flat frame from a list of images

	create_orderframe(data,first_order,xc,...)
	Create an order frame from from an observation.

	fit_order(data,detect_kernal,xc[,order,...])
	Given an array and an overlapping detect_kernal,

	fit_wavelength_solution(sol_dict)
	Determine the best fit solution and re-fit each line with that solution

	hrs_process(image_name[,ampsec,oscansec,...])
	Processing required for HRS observations.

	iterfit1D(x,y,fitter,model[,yerr,...])
	Iteratively fit a function.

	match_lines(xarr,farr,sw,sf,ws[,rw,...])
	Match lines in the spectra with specific wavleengths

	ncor(x,y)
	Calculate the normalized correlation of two arrays

	normalize_image(data,func_init,mask[,...])
	Normalize an HRS image.

	red_process(infile[,masterbias,error,rdnoise])
	Process a blue frame

	test([package,test_path,args,plugins,...])
	Run the tests using py.test [http://pytest.org/latest].

	wavelength_calibrate_arc(arc,order_frame,...)
	Wavelength calibrate an arc spectrum from HRS

	wavelength_calibrate_order(hrs,slines,...)
	Wavelength calibration of a single order from the HRS arc spectra

	xcross_fit(warr,farr,sw_arr,sf_arr[,dw,nw])
	Calculate a zeropoint shift between the observed arc

	CCD([name,height,width,xpos,ypos,...])
	Defines a CCD by x and y position, size, and pixel size.

	Detector([name,ccd,zpos,xpos,ypos,...])
	A class that describing the Detector.

	Grating([name,spacing,order,height,...])
	A class that describing gratings.

	HRSModel([grating_name,camera_name,slit,...])
	HRSModel is a class that describes the High Resolution Specotrgraph on SALT

	HRSOrder(order[,region,flux,wavelength,...])
	A class describing a single order for a High Resolutoin Spectrograph observation.

	Optics([name,diameter,focallength,width,...])
	A class that describing optics.

	Slit([name,height,width,zpos,xpos,...])
	A class that describing the slit.

	Spectrograph([camang,gratang,grating,...])
	A class describing a spectrograph and functions related to a spectrograph.

	SpectrographError
	Exception Raised for Spectrograph errors

[image: Inheritance diagram of pyhrs.hrsmodel.HRSModel, pyhrs.hrsorder.HRSOrder]

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyhrs v0.0.dev126

 	PyHRS

background

	
pyhrs.background(b_arr, niter=3)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L13]

	Determine the background for an array

	Parameters:	b_arr: numpy.ndarray

Array for the determination of the background

niter: int

Number of iterations for sigma clipping

	Returns:	bkgrd: float

median background value after sigma clipping

bkstd: float

Estimated standard deviation based on the median
absolute deviation

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

blue_process

	
pyhrs.blue_process(infile, masterbias=None, error=False, rdnoise=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsprocess.py#L307]

	Process a blue frame

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

calc_weights

	
pyhrs.calc_weights(x, y, m, yerr=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L275]

	Calculate weights for each value based on deviation from best fit model

	Parameters:	x: numpy.ndarray

Arrray of x-values

y: numpy.ndarray

Arrray of y-values

model: ~astropy.modeling.model

A model to be fit

yerr: numpy.ndarray

[Optional] Array of uncertainties for the y-value

	Returns:	weights: numpy.ndarray

Weights for each parameter

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

ccd_process

	
pyhrs.ccd_process(ccd, oscan=None, trim=None, error=False, masterbias=None, bad_pixel_mask=None, gain=None, rdnoise=None, oscan_median=True, oscan_model=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsprocess.py#L18]

	Perform basic processing on ccd data.

	The following steps can be included:

	
	overscan correction

	trimming of the image

	create edeviation frame

	gain correction

	add a mask to the data

	subtraction of master bias

The task returns a processed ccdproc.CCDData object.

	Parameters:	ccd: `ccdproc.CCDData`

Frame to be reduced

oscan: None, str, or, `~ccdproc.ccddata.CCDData`

For no overscan correction, set to None. Otherwise proivde a region
of ccd from which the overscan is extracted, using the FITS
conventions for index order and index start, or a
slice from ccd that contains the overscan.

trim: None or str

For no trim correction, set to None. Otherwise proivde a region
of ccd from which the image should be trimmed, using the FITS
conventions for index order and index start.

error: boolean

If True, create an uncertainty array for ccd

masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData`

A materbias frame to be subtracted from ccd.

bad_pixel_mask: None or `~numpy.ndarray`

A bad pixel mask for the data. The bad pixel mask should be in given
such that bad pixels havea value of 1 and good pixels a value of 0.

gain: None or `~astropy.Quantity`

Gain value to multiple the image by to convert to electrons

rdnoise: None or `~astropy.Quantity`

Read noise for the observations. The read noise should be in
electron

oscan_median : bool, optional

If true, takes the median of each line. Otherwise, uses the mean

oscan_model : Model [http://docs.astropy.org/en/stable/api/astropy.modeling.Model.html#astropy.modeling.Model], optional

Model to fit to the data. If None, returns the values calculated
by the median or the mean.

	Returns:	ccd: ccdproc.CCDData

Reduded ccd

Examples

	To overscan, trim, and gain correct a data set:

>>> import numpy as np
>>> from astropy import units as u
>>> from hrsprocess import ccd_process
>>> ccd = CCDData(np.ones([100, 100]), unit=u.adu)
>>> nccd = ccd_process(ccd, oscan='[1:10,1:100]', trim='[10:100, 1,100]',
 error=False, gain=2.0*u.electron/u.adu)

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

create_masterbias

	
pyhrs.create_masterbias(image_list)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/calibrationframes.py#L29]

	Create a master bias frame from a list of images

	Parameters:	image_list: list

List contain the file names to be processed

	Returns:	masterbias: ccddata.CCDData

Combine master bias from the biases supplied in image_list

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

create_masterflat

	
pyhrs.create_masterflat(image_list, masterbias=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/calibrationframes.py#L64]

	Create a master flat frame from a list of images

	Parameters:	image_list: list

List contain the file names to be processed

masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData`

A materbias frame to be subtracted from ccd.

	Returns:	masterflat: ccddata.CCDData

Combine master flat from the flats supplied in image_list

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

create_orderframe

	
pyhrs.create_orderframe(data, first_order, xc, detect_kernal, smooth_length=15, y_start=0, y_limit=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/calibrationframes.py#L102]

	Create an order frame from from an observation.

A one dimensional detect_kernal is correlated with a column in the image. The
kernal steps through y-space until a match is made. Once a best fit is
found, the order is extracted to include all pixels that are detected to
be part of that order. Once all pixels have been extracted, they
are set to zero in the original frame. The detection kernal is updated
by the new order detected

	Parameters:	data: ~numpy.ndarray

An image with the different orders illuminated. Any processing of this
image should have been performed prior to running create_orderframe.

first_order: int

The first order to appear in the image starting from the bottom of the
image

xc: int

The x-position to extract a 1-D map of the orders

detect_kern: ~numpy.ndarray

The initial detection kernal which have the shape of a single order.

smooth_length: int

The length to smooth the images by prior to processing them

y_start: int

The initial value to start searching for the first maximum

y_limit: int

The limit in y-positions for automatically finding the orders.

	Returns:	order_frame: ~numpy.ndarray

An image with each of the order identified by their number

Notes

Currently no orders are extrcted above y_limit and the code still needs to
be updated to handle those higher orders

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

fit_order

	
pyhrs.fit_order(data, detect_kernal, xc, order=3, ratio=0.5)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L39]

	Given an array and an overlapping detect_kernal,
determine two polynomials that would outline the top
and bottom of the order

	Parameters:	data: ~numpy.ndarray

Image of the orders

detect_kernal: ~numpy.ndarray

An array aligned with data that has the approximate
outline of the order. The data shoud have a value
of one for where the order is.

xc: int

x-position to determine the width of the order

order: int

Order to use for the polynomial fit.

ratio: float

Limit at which to determine an order. It is the
ratio of the flux in the pixle to the flux at the
peak.

	Returns:	y_l: Polynomial1D

A polynomial that outlines the bottom of the order

y_u: Polynomial1D

A polynomial that outlines the top of the order

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

fit_wavelength_solution

	
pyhrs.fit_wavelength_solution(sol_dict)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L174]

	Determine the best fit solution and re-fit each line with that solution

The following steps are used to determine the best wavelength solution:
1. The coefficients of the solution to each row are fit by a line
2. The coefficients for each row are then replaced by the best-fit values
3. The wavelenght zeropoint is then re-calculated for each row

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

hrs_process

	
pyhrs.hrs_process(image_name, ampsec=, []oscansec=, []trimsec=, []masterbias=None, error=False, bad_pixel_mask=None, flip=False, rdnoise=None, oscan_median=True, oscan_model=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsprocess.py#L155]

	
	Processing required for HRS observations. If the images have multiple

	amps, then this will process each part of the image and recombine them
into for the final results

	Parameters:	image_name: str

Name of file to be processed

ampsec: list

List of ampsections. This list should have the same length as the
number of amps in the data set. The sections should be given
in the format of fits_sections (see below).

oscansec: list

List of overscan sections. This list should have the same length as the
number of amps in the data set. The sections should be given
in the format of fits_sections (see below).

trimsec: list

List of overscan sections. This list should have the same length as the
number of amps in the data set. The sections should be given
in the format of fits_sections (see below).

error: boolean

If True, create an uncertainty array for ccd

masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData`

A materbias frame to be subtracted from ccd.

bad_pixel_mask: None or `~numpy.ndarray`

A bad pixel mask for the data. The bad pixel mask should be in given
such that bad pixels havea value of 1 and good pixels a value of 0.

flip: boolean

If True, the image will be flipped such that the orders run from the
bottom of the image to the top and the dispersion runs from the left
to the right.

rdnoise: None or `~astropy.Quantity`

Read noise for the observations. The read noise should be in
electron

oscan_median : bool, optional

If true, takes the median of each line. Otherwise, uses the mean

oscan_model : Model [http://docs.astropy.org/en/stable/api/astropy.modeling.Model.html#astropy.modeling.Model], optional

Model to fit to the data. If None, returns the values calculated
by the median or the mean.

	Returns:	ccd: CCDData

Data processed and

Notes

The format of the fits_section string follow the rules for slices that
are consistent with the FITS standard (v3) and IRAF usage of keywords like
TRIMSEC and BIASSEC. Its indexes are one-based, instead of the
python-standard zero-based, and the first index is the one that increases
most rapidly as you move through the array in memory order, opposite the
python ordering.

The ‘fits_section’ argument is provided as a convenience for those who are
processing files that contain TRIMSEC and BIASSEC. The preferred, more
pythonic, way of specifying the overscan is to do it by indexing the data
array directly with the overscan argument.

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

iterfit1D

	
pyhrs.iterfit1D(x, y, fitter, model, yerr=None, thresh=5, niter=5)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L238]

	Iteratively fit a function.

Outlyiers will have a reduced weight in the fit, and then
the fit will be repeated niter times to determine the
best fits

	Parameters:	x: numpy.ndarray

Arrray of x-values

y: numpy.ndarray

Arrray of y-values

fitter: ~astropy.modeling.fitting

Method to fit the model

model: ~astropy.modeling.model

A model to be fit

	Returns:	m: ~astropy.modeling.model

Model fit after reducing the weight of outlyiers

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

match_lines

	
pyhrs.match_lines(xarr, farr, sw, sf, ws, rw=5, npoints=20, xlimit=1.0, slimit=1.0, wlimit=1.0)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L476]

	Match lines in the spectra with specific wavleengths

Match lines works by finding the closest peak based on the x-position
transformed by ws that is within wlimit of a known line.

	Parameters:	xarr: numpy.ndarray

pixel positions

farr: numpy.ndarray

flux values at xarr positions

sw: numpy.ndarray

wavelengths of known arc lines

sf: numpy.ndarray

relative fluxes at those wavelengths

ws: function

Function converting xarr into wavelengths. It should be
defined such that wavelength = ws(xarr)

rw: float

Radius around peak to extract for fitting the center

npoints: int

The maximum number of points to bright points to fit.

xlimit: float

Maximum shift in line centroid when fitting

slimit: float

Minimum scale for line when fitting

wlimit: float

Minimum separation in wavelength between peak and line

	Returns:	mx: numpy.ndarray

x-position for matched lines

mw: numpy.ndarray

Wavelength position for matched lines

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

ncor

	
pyhrs.ncor(x, y)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L308]

	Calculate the normalized correlation of two arrays

	Parameters:	x: numpy.ndarray

Arrray of x-values

y: numpy.ndarray

Arrray of y-values

	Returns:	ncor: float

Normalize correctation value for two arrays

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

normalize_image

	
pyhrs.normalize_image(data, func_init, mask, fitter=<class 'astropy.modeling.fitting.LinearLSQFitter'>, normalize=True)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L98]

	Normalize an HRS image.

The tasks takes an image and will fit a function to the overall
shape to it. The task will only fit to the illuminated orders
and if an order_frame is provided it will use that to identify the
areas it should fit to. Otherwise, it will filter the image such that
only the maximum areas are fit.

This function will then be divided out of the image and return
a normalized image if requested.

	Parameters:	data: numpy.ndarray

Data to be normalized

mask: numpy.ndarray

If a numpy.ndarray, this will be used to determine areas
to be used for the fit.

func_init: ~astropy.modeling.models

Function to fit to the image

fitter: ~astropy.modeling.fitting

Fitter function

normalize: boolean

If normalize is True, it will return data normalized by the
function fit to it. If normalize is False, it will return
an array representing the function fit to data.

	Returns:	ndata: numpy.ndarray

If normalize is True, it will return data normalized by the
function fit to it. If normalize is False, it will return
an array representing the function fit to data.

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

red_process

	
pyhrs.red_process(infile, masterbias=None, error=None, rdnoise=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsprocess.py#L322]

	Process a blue frame

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

test

	
pyhrs.test(package=None, test_path=None, args=None, plugins=None, verbose=False, pastebin=None, remote_data=False, pep8=False, pdb=False, coverage=False, open_files=False, **kwargs)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/_astropy_init.py#L31]

	Run the tests using py.test [http://pytest.org/latest]. A proper set
of arguments is constructed and passed to pytest.main [http://pytest.org/latest/builtin.html#pytest.main].

	Parameters:	package : str, optional

The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’.
If nothing is specified all default tests are run.

test_path : str, optional

Specify location to test by path. May be a single file or
directory. Must be specified absolutely or relative to the
calling directory.

args : str, optional

Additional arguments to be passed to pytest.main [http://pytest.org/latest/builtin.html#pytest.main] in the args
keyword argument.

plugins : list, optional

Plugins to be passed to pytest.main [http://pytest.org/latest/builtin.html#pytest.main] in the plugins keyword
argument.

verbose : bool, optional

Convenience option to turn on verbose output from py.test [http://pytest.org/latest/]. Passing
True is the same as specifying '-v' in args.

pastebin : {‘failed’,’all’,None}, optional

Convenience option for turning on py.test [http://pytest.org/latest/] pastebin output. Set to
'failed' to upload info for failed tests, or 'all' to upload
info for all tests.

remote_data : bool, optional

Controls whether to run tests marked with @remote_data. These
tests use online data and are not run by default. Set to True to
run these tests.

pep8 : bool, optional

Turn on PEP8 checking via the pytest-pep8 plugin [http://pypi.python.org/pypi/pytest-pep8] and disable normal
tests. Same as specifying '--pep8 -k pep8' in args.

pdb : bool, optional

Turn on PDB post-mortem analysis for failing tests. Same as
specifying '--pdb' in args.

coverage : bool, optional

Generate a test coverage report. The result will be placed in
the directory htmlcov.

open_files : bool, optional

Fail when any tests leave files open. Off by default, because
this adds extra run time to the test suite. Works only on
platforms with a working lsof command.

parallel : int, optional

When provided, run the tests in parallel on the specified
number of CPUs. If parallel is negative, it will use the all
the cores on the machine. Requires the
pytest-xdist [https://pypi.python.org/pypi/pytest-xdist] plugin
installed. Only available when using Astropy 0.3 or later.

kwargs

Any additional keywords passed into this function will be passed
on to the astropy test runner. This allows use of test-related
functionality implemented in later versions of astropy without
explicitly updating the package template.

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

wavelength_calibrate_arc

	
pyhrs.wavelength_calibrate_arc(arc, order_frame, slines, sfluxes, first_order, hrs_model, ws_init, fit_ws, y0=50, wavelength_shift=None, xlimit=1.0, slimit=1.0, wlimit=0.5, min_order=54)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/calibrationframes.py#L217]

	Wavelength calibrate an arc spectrum from HRS

‘wavelength_calibrate_order’ will be applied to each order in ‘order_frame’a
Once all orders have been processed, it will return an array where the
wavelength is specified at each x- and y-position.

	Parameters:	arc: ~ccdproc.CCDData

Arc frame to be calibrated

order_frame: ~ccdproc.CCDData

Frame containting the positions of each of the orders

slines: numpy.ndarray

wavelengths of known arc lines

sfluxes: numpy.ndarray

relative fluxes at those wavelengths

first_order: int

First order to be processed

hrs_model: ~HRSModel

A model for the spectrograph for the given arc

ws_init: ~astropy.modeling.model

A initial model decribe the trasnformation from x-position to
wavelength

fit_ws: ~astropy.modeling.fitting

Method to fit the model

y0: int

First row in which to determine the solution

wavelength_shift: ~astropy.modeling.model or None

For the row given by y0, this is the correction needed to be applied
to the model wavelengths to provide a closer match to the observed
arc.

npoints: int

The maximum number of points to bright points to fit.

xlimit: float

Maximum shift in line centroid when fitting

slimit: float

Minimum scale for line when fitting

wlimit: float

Minimum separation in wavelength between peak and line

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

wavelength_calibrate_order

	
pyhrs.wavelength_calibrate_order(hrs, slines, sfluxes, ws_init, fit_ws, y0=50, npoints=30, xlimit=1.0, slimit=1.0, wlimit=0.5)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/calibrationframes.py#L340]

	Wavelength calibration of a single order from the HRS arc spectra

The calibration proceeds through following steps:
1. Curvature due to the optical distortion is removed from the spectra and

a square representation of the 2D spectra is created. Only integer
shifts are applied to the data

	A model of the spectrograph is created based on the order, camera, and
xpos offset that are supplied.

	In each row of the data, peaks are extracted and matched with a
line in the atlas of wavelengths that is provided (slines, sflux). For
the details of the matching process, see the match_arc function.

	Once the first set of peaks and lines are matched up, a new solution
is calculated for the given row. Then the processes of matching
lines and determining a wavelength solution is repeated. The best
result from each line is saved.

	Using all of the matched lines from all lines, a ‘best’ solution is
determined. Everything but the zeroth order parameter of the fit
is fixed to a slowly varying value based on the overall solution to all
lines. See fit_solution for more details.

	Based on the best solution found, the process is repeated for each
row but only determing the zeropoint.

	Based on the solution found, a wavelength is assigned to each pixel

	Parameters:	hrs: ~HRSOrder

Object describing a single HRS order. It should already contain the
defined order and the flux from the arc for that order

slines: numpy.ndarray

wavelengths of known arc lines

sfluxes: numpy.ndarray

relative fluxes at those wavelengths

ws_init: ~astropy.modeling.model

A initial model decribe the trasnformation from x-position to
wavelength

fit_ws: ~astropy.modeling.fitting

Method to fit the model

y0: int

First row for determine the solution

npoints: int

The maximum number of points to bright points to fit.

xlimit: float

Maximum shift in line centroid when fitting

slimit: float

Minimum scale for line when fitting

wlimit: float

Minimum separation in wavelength between peak and line

	Returns:	hrs: ~HRSOrder

An HRSOrder with a calibrated wavelength property

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

xcross_fit

	
pyhrs.xcross_fit(warr, farr, sw_arr, sf_arr, dw=1.0, nw=100)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrstools.py#L330]

	
	Calculate a zeropoint shift between the observed arc

	and the line list of values

	Parameters:	warr: numpy.ndarray

Estimated wavelength for arc

farr: numpy.ndarray

Flux at each arc position

sw_arr: numpy.ndarray

Wavelength of known lines

sf_arr: numpy.ndarray

Flux of known lines

dw: float

Value to search over. The search will be done from -dw to +dw

nw: int

Number of steps in the search

	Returns:	warr: numpy.ndarray

Wavelength after correcting for shift from fiducial values

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	pyhrs v0.0.dev126

 	PyHRS

HRSModel

	
class pyhrs.HRSModel(grating_name='hrs', camera_name='hrdet', slit=2.0, order=83, gamma=None, xbin=1, ybin=1, xpos=0.0, ypos=0.0)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L7]

	Bases: PySpectrograph.Spectrograph.Spectrograph.Spectrograph

HRSModel is a class that describes the High Resolution Specotrgraph on SALT

Methods Summary

	alpha([da])
	Return the value of alpha for the spectrograph

	beta([db])
	Return the value of beta for the spectrograph

	get_wavelength(xarr[,gamma])
	For a given spectrograph configuration, return the wavelength coordinate associated with a pixel coordinate.

	set_camera([name,focallength])
	

	set_collimator([name,focallength])
	

	set_detector([name,geom,xbin,ybin,xpos,...])
	

	set_grating([name,order])
	

	set_order(order)
	

	set_slit([slitang])
	

	set_telescope([name])
	

Methods Documentation

	
alpha(da=0.0)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L45]

	Return the value of alpha for the spectrograph

	
beta(db=0)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L49]

	Return the value of beta for the spectrograph

Beta_o=(1+fA)*(camang)-gratang+beta_o

	
get_wavelength(xarr, gamma=0.0)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L56]

	For a given spectrograph configuration, return the wavelength coordinate
associated with a pixel coordinate.

xarr: 1-D Array of pixel coordinates
gamma: Value of gamma for the row being analyzed

returns an array of wavelengths in mm

	
set_camera(name='hrdet', focallength=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L84]

	

	
set_collimator(name='hrs', focallength=2000.0)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L77]

	

	
set_detector(name='hrdet', geom=None, xbin=1, ybin=1, xpos=0, ypos=0)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L94]

	

	
set_grating(name=None, order=83)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L109]

	

	
set_order(order)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L130]

	

	
set_slit(slitang=2.2)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L134]

	

	
set_telescope(name='SALT')[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsmodel.py#L71]

	

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	pyhrs v0.0.dev126

 	PyHRS

HRSOrder

	
class pyhrs.HRSOrder(order, region=None, flux=None, wavelength=None, flux_unit=None, wavelength_unit=None, order_type=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsorder.py#L10]

	Bases: object [http://docs.python.org/3/library/functions.html#object]

A class describing a single order for a High Resolutoin Spectrograph
observation.

	Parameters:	order: integer

Order of the HRS observations

region: list, tuple, or `~numpy.ndarray`

region is an object that contains coordinates for pixels in
the image which are part of this order. It should be a list
containing two arrays with the coordinates listed in each array.

flux: `~numpy.ndarray`

Fluxes corresponding to each pixel coordinate in region.

wavelength: `~numpy.ndarray`

Wavelengths corresponding to each pixel coordinate in region.

order_type: str

Type of order for the Order of the HRS observations

flux_unit: `~astropy.units.UnitBase` instance or str, optional

The units of the flux.

wavelength_unit: `~astropy.units.UnitBase` instance or str, optional

The units of the wavelength

Attributes Summary

	flux
	

	flux_unit
	

	order
	

	order_type
	

	region
	

	wavelength
	

	wavelength_unit
	

Methods Summary

	extract_spectrum()
	Extract 1D spectrum from the information provided so far and

	set_flux_from_array(data[,flux_unit])
	Given an array of data of fluxes, set the fluxes for

	set_order_from_array(data)
	Given an array of data which has an order specified at each pixel,

	set_wavelength_from_array(data,wavelength_unit)
	Given an array of wavelengths, set the wavelength for each pixel coordinate in region.

	set_wavelength_from_model(model,params,...)
	Given an array of wavelengths, set the wavelength for each pixel coordinate in region.

Attributes Documentation

	
flux

	

	
flux_unit

	

	
order

	

	
order_type

	

	
region

	

	
wavelength

	

	
wavelength_unit

	

Methods Documentation

	
extract_spectrum()[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsorder.py#L256]

	Extract 1D spectrum from the information provided so far and
createa Spectrum1D object

	
set_flux_from_array(data, flux_unit=None)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsorder.py#L170]

	
	Given an array of data of fluxes, set the fluxes for

	the region at the given order for HRSOrder

	Parameters:	data: `~numpy.ndarray`

data is an 2D array with a flux value specified at each pixel.

flux_unit: `~astropy.units.UnitBase` instance or str, optional

The units of the flux.

	
set_order_from_array(data)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsorder.py#L151]

	
	Given an array of data which has an order specified at each pixel,

	set the region at the given order for HRSOrder

	Parameters:	data: `~numpy.ndarray`

data is an 2D array with an order value specified at each pixel. If
no order is available for a given pixel, the pixel should have a
value of zero.

	
set_wavelength_from_array(data, wavelength_unit)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsorder.py#L193]

	
	Given an array of wavelengths, set the wavelength for

	each pixel coordinate in region.

	Parameters:	data: `~numpy.ndarray`

data is an 2D array with a wavelength value specified at each pixel

wavelength_unit: `~astropy.units.UnitBase` instance or str, optional

The units of the wavelength

	
set_wavelength_from_model(model, params, wavelength_unit, **kwargs)[source][edit on github] [http://github.com/saltastro/pyhrs/tree/master/pyhrs/hrsorder.py#L216]

	
	Given an array of wavelengths, set the wavelength for

	each pixel coordinate in region.

	Parameters:	model: function

model is a callable function that will create a corresponding
wavelength for each pixel in region. The function
can either be 1D or 2D. If it is 2D, the x-coordinate should
be the first argument.

params: `~numpy.ndarray`

Either a 1D or 2D list of parameters with the number of elements
corresponding to the number of pixles. Typically, if model
is a 1D function, this would be the x-coordinated from
region. Otherwise, this would be expected to be
region.

wavelength_unit: `~astropy.units.UnitBase` instance or str, optional

The units of the wavelength

**kwargs:

All additional keywords to be passed to model

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pyhrs v0.0.dev126

 Python Module Index

 p

 			

 		
 p	

 	
 	
 pyhrs	

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	pyhrs v0.0.dev126

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W
 | X

A

 	

 	alpha() (pyhrs.HRSModel method)

B

 	

 	background() (in module pyhrs)

 	beta() (pyhrs.HRSModel method)

 	

 	blue_process() (in module pyhrs)

C

 	

 	calc_weights() (in module pyhrs)

 	ccd_process() (in module pyhrs)

 	create_masterbias() (in module pyhrs)

 	

 	create_masterflat() (in module pyhrs)

 	create_orderframe() (in module pyhrs)

E

 	

 	extract_spectrum() (pyhrs.HRSOrder method)

F

 	

 	fit_order() (in module pyhrs)

 	fit_wavelength_solution() (in module pyhrs)

 	

 	flux (pyhrs.HRSOrder attribute)

 	flux_unit (pyhrs.HRSOrder attribute)

G

 	

 	get_wavelength() (pyhrs.HRSModel method)

H

 	

 	hrs_process() (in module pyhrs)

 	HRSModel (class in pyhrs)

 	

 	HRSOrder (class in pyhrs)

I

 	

 	iterfit1D() (in module pyhrs)

M

 	

 	match_lines() (in module pyhrs)

N

 	

 	ncor() (in module pyhrs)

 	

 	normalize_image() (in module pyhrs)

O

 	

 	order (pyhrs.HRSOrder attribute)

 	

 	order_type (pyhrs.HRSOrder attribute)

P

 	

 	pyhrs (module)

R

 	

 	red_process() (in module pyhrs)

 	

 	region (pyhrs.HRSOrder attribute)

S

 	

 	set_camera() (pyhrs.HRSModel method)

 	set_collimator() (pyhrs.HRSModel method)

 	set_detector() (pyhrs.HRSModel method)

 	set_flux_from_array() (pyhrs.HRSOrder method)

 	set_grating() (pyhrs.HRSModel method)

 	set_order() (pyhrs.HRSModel method)

 	

 	set_order_from_array() (pyhrs.HRSOrder method)

 	set_slit() (pyhrs.HRSModel method)

 	set_telescope() (pyhrs.HRSModel method)

 	set_wavelength_from_array() (pyhrs.HRSOrder method)

 	set_wavelength_from_model() (pyhrs.HRSOrder method)

T

 	

 	test() (in module pyhrs)

W

 	

 	wavelength (pyhrs.HRSOrder attribute)

 	wavelength_calibrate_arc() (in module pyhrs)

 	

 	wavelength_calibrate_order() (in module pyhrs)

 	wavelength_unit (pyhrs.HRSOrder attribute)

X

 	

 	xcross_fit() (in module pyhrs)

 Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_modules/pyhrs/hrsmodel.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 		Module code »

 Source code for pyhrs.hrsmodel

import numpy as np
from PySpectrograph.Spectrograph import Spectrograph, Grating, Optics, CCD, \
 Detector, Slit
from PySpectrograph import SpectrographError

[docs]class HRSModel (Spectrograph):

 """HRSModel is a class that describes the High Resolution Specotrgraph on SALT
 """

 def __init__(self, grating_name='hrs', camera_name='hrdet', slit=2.0,
 order=83, gamma=None, xbin=1, ybin=1, xpos=0.00, ypos=0.00):

 # set up the parts of the grating
 self.grating_name = grating_name

 # set the telescope
 self.set_telescope('SALT')

 # set the collimator
 self.set_collimator('hrs')

 # set the camera
 self.set_camera(camera_name)

 # set the detector
 self.set_detector(
 camera_name,
 xbin=xbin,
 ybin=ybin,
 xpos=xpos,
 ypos=ypos)

 # set up the grating
 self.set_grating(self.grating_name, order=order)

 # set up the slit
 self.set_slit(slit)

 # set up the grating angle
 if gamma is not None:
 self.gamma = gamma

[docs] def alpha(self, da=0.00):
 """Return the value of alpha for the spectrograph"""
 return self.grating.blaze + self.gamma

[docs] def beta(self, db=0):
 """Return the value of beta for the spectrograph

 Beta_o=(1+fA)*(camang)-gratang+beta_o
 """
 return self.grating.blaze - self.gamma + db

[docs] def get_wavelength(self, xarr, gamma=0.0):
 """For a given spectrograph configuration, return the wavelength coordinate
 associated with a pixel coordinate.

 xarr: 1-D Array of pixel coordinates
 gamma: Value of gamma for the row being analyzed

 returns an array of wavelengths in mm
 """
 d = self.detector.xbin * self.detector.pix_size * \
 (xarr - self.detector.get_xpixcenter())
 dbeta = np.degrees(np.arctan(d / self.camera.focallength))
 return self.calc_wavelength(
 self.alpha(), -self.beta() + dbeta, gamma=gamma)

[docs] def set_telescope(self, name='SALT'):
 if name == 'SALT':
 self.telescope = Optics(name=name, focallength=46200.0)
 else:
 raise SpectrographError('%s is not a supported Telescope' % name)

[docs] def set_collimator(self, name='hrs', focallength=2000.0):
 if name == 'hrs':
 self.collimator = Optics(name=name, focallength=focallength)
 else:
 msg = '{0} is not a supported collimator'.format(name)
 raise SpectrographError(msg)

[docs] def set_camera(self, name='hrdet', focallength=None):
 if name == 'hrdet':
 self.camera = Optics(name=name, focallength=402.26)
 self.gamma = 2.43
 elif name == 'hbdet':
 self.camera = Optics(name=name, focallength=333.6)
 self.gamma = 2.00
 else:
 raise SpectrographError('%s is not a supported camera' % name)

[docs] def set_detector(
 self, name='hrdet', geom=None, xbin=1, ybin=1, xpos=0, ypos=0):
 if name == 'hrdet':
 ccd = CCD(name='hrdet', xpix=4122, ypix=4112,
 pix_size=0.015, xpos=0.00, ypos=0.00)
 self.detector = Detector(name=name, ccd=[ccd], xbin=xbin,
 ybin=ybin, xpos=xpos, ypos=ypos)
 elif name == 'hbdet':
 ccd = CCD(name='hrdet', xpix=2100, ypix=4112,
 pix_size=0.015, xpos=0.00, ypos=0.00)
 self.detector = Detector(name=name, ccd=[ccd], xbin=xbin,
 ybin=ybin, xpos=xpos, ypos=ypos)
 else:
 raise SpectrographError('%s is not a supported detector' % name)

[docs] def set_grating(self, name=None, order=83):
 if name == 'hrs':
 self.grating = Grating(name='hrs', spacing=41.59, blaze=76.0,
 order=order)
 self.set_order(order)
 elif name == 'red beam':
 self.grating = Grating(name='red beam', spacing=855, blaze=0,
 order=1)
 self.alpha_angle = 17.5
 self.set_order(1)
 elif name == 'blue beam':
 self.grating = Grating(
 name='blue beam',
 spacing=1850,
 blaze=0,
 order=1)
 self.alpha = 24.6
 self.set_order(1)
 else:
 raise SpectrographError('%s is not a supported grating' % name)

[docs] def set_order(self, order):
 self.order = order
 self.grating.order = order

[docs] def set_slit(self, slitang=2.2):
 self.slit = Slit(name='Fiber', phi=slitang)
 self.slit.width = self.slit.calc_width(self.telescope.focallength)

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_modules/pyhrs/hrsorder.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 		Module code »

 Source code for pyhrs.hrsorder

Licensed under a 3-clause BSD style license - see LICENSE.rst
This module implements the base CCDData class.
from __future__ import (absolute_import, division, print_function,
 unicode_literals)

import numpy as np
from astropy import units as u

[docs]class HRSOrder(object):

 """A class describing a single order for a High Resolutoin Spectrograph
 observation.

 Parameters

 order: integer
 Order of the HRS observations

 region: list, tuple, or `~numpy.ndarray`
 region is an object that contains coordinates for pixels in
 the image which are part of this order. It should be a list
 containing two arrays with the coordinates listed in each array.

 flux: `~numpy.ndarray`
 Fluxes corresponding to each pixel coordinate in region.

 wavelength: `~numpy.ndarray`
 Wavelengths corresponding to each pixel coordinate in region.

 order_type: str
 Type of order for the Order of the HRS observations

 flux_unit: `~astropy.units.UnitBase` instance or str, optional
 The units of the flux.

 wavelength_unit: `~astropy.units.UnitBase` instance or str, optional
 The units of the wavelength

 """

 def __init__(self, order, region=None, flux=None, wavelength=None,
 flux_unit=None, wavelength_unit=None, order_type=None):
 self.order = order
 self.region = region
 self.flux = flux
 self.wavelength = wavelength

 self.flux_unit = flux_unit
 self.wavelength_unit = wavelength_unit
 self.order_type = order_type

 @property
 def order(self):
 return self._order

 @order.setter
 def order(self, value):
 if not isinstance(value, int):
 raise TypeError('order is not an integer')
 self._order = value

 @property
 def order_type(self):
 return self._order_type

 @order_type.setter
 def order_type(self, value):
 if value not in ['sky', 'object', None]:
 raise TypeError("order_type is not None, 'sky', or 'object'")
 self._order_type = value

 @property
 def region(self):
 return self._region

 @region.setter
 def region(self, value):
 if value is None:
 self._region = None
 return

 if len(value) != 2:
 raise TypeError("region is not of length 2")
 if len(value[0]) != len(value[1]):
 raise TypeError(
 "coordinate lists in region are not of equal length")

 self.npixels = len(value[0])
 self._region = value

 @property
 def flux(self):
 return self._flux

 @flux.setter
 def flux(self, value):
 if value is None:
 self._flux = None
 return

 if self.region is None:
 raise ValueError('No region is set yet')

 if len(value) != self.npixels:
 raise TypeError("flux is not the same length as region")

 self._flux = value

 @property
 def wavelength(self):
 return self._wavelength

 @wavelength.setter
 def wavelength(self, value):
 if value is None:
 self._wavelength = None
 return

 if self.region is None:
 raise ValueError('No region is set yet')

 if len(value) != self.npixels:
 raise TypeError("wavelength is not the same length as region")

 self._wavelength = value

 @property
 def flux_unit(self):
 return self._flux_unit

 @flux_unit.setter
 def flux_unit(self, value):
 if value is None:
 self._flux_unit = None
 else:
 self._flux_unit = u.Unit(value)

 @property
 def wavelength_unit(self):
 return self._wavelength_unit

 @wavelength_unit.setter
 def wavelength_unit(self, value):
 if value is None:
 self._wavelength_unit = None
 else:
 self._wavelength_unit = u.Unit(value)

[docs] def set_order_from_array(self, data):
 """Given an array of data which has an order specified at each pixel,
 set the region at the given order for HRSOrder

 Parameters

 data: `~numpy.ndarray`
 data is an 2D array with an order value specified at each pixel. If
 no order is available for a given pixel, the pixel should have a
 value of zero.

 """
 if not isinstance(data, np.ndarray):
 raise TypeError('data is not an numpy.ndarray')
 if data.ndim != 2:
 raise TypeError('data is not a 2D numpy.ndarray')

 self.region = np.where(data == self.order)

[docs] def set_flux_from_array(self, data, flux_unit=None):
 """Given an array of data of fluxes, set the fluxes for
 the region at the given order for HRSOrder

 Parameters

 data: `~numpy.ndarray`
 data is an 2D array with a flux value specified at each pixel.

 flux_unit: `~astropy.units.UnitBase` instance or str, optional
 The units of the flux.

 """

 if not isinstance(data, np.ndarray):
 raise TypeError('data is not an numpy.ndarray')

 if data.ndim != 2:
 raise TypeError('data is not a 2D numpy.ndarray')

 self.flux = data[self.region]
 self.flux_unit = flux_unit

[docs] def set_wavelength_from_array(self, data, wavelength_unit):
 """Given an array of wavelengths, set the wavelength for
 each pixel coordinate in `~HRSOrder.region`.

 Parameters

 data: `~numpy.ndarray`
 data is an 2D array with a wavelength value specified at each pixel

 wavelength_unit: `~astropy.units.UnitBase` instance or str, optional
 The units of the wavelength

 """

 if not isinstance(data, np.ndarray):
 raise TypeError('data is not an numpy.ndarray')

 if data.ndim != 2:
 raise TypeError('data is not a 2D numpy.ndarray')

 self.wavelength = data[self.region]
 self.wavelength_unit = wavelength_unit

[docs] def set_wavelength_from_model(
 self, model, params, wavelength_unit, **kwargs):
 """Given an array of wavelengths, set the wavelength for
 each pixel coordinate in `~HRSOrder.region`.

 Parameters

 model: function
 model is a callable function that will create a corresponding
 wavelength for each pixel in `~HRSOrder.region`. The function
 can either be 1D or 2D. If it is 2D, the x-coordinate should
 be the first argument.

 params: `~numpy.ndarray`
 Either a 1D or 2D list of parameters with the number of elements
 corresponding to the number of pixles. Typically, if model
 is a 1D function, this would be the x-coordinated from
 `~HRSOrder.region`. Otherwise, this would be expected to be
 `~HRSOrder.region`.

 wavelength_unit: `~astropy.units.UnitBase` instance or str, optional
 The units of the wavelength

 **kwargs:
 All additional keywords to be passed to model

 """
 if not hasattr(model, '__call__'):
 raise TypeError('model is not a function')

 self.wavelength_unit = wavelength_unit

 if len(params) == self.npixels:
 self.wavelength = model(params, **kwargs)
 elif len(params) == 2:
 self.wavelength = model(params[1], params[0], **kwargs)

 else:
 raise TypeError('params is not the correct size or shape')

[docs] def extract_spectrum(self):
 """Extract 1D spectrum from the information provided so far and
 createa `~specutils.Spectrum1D` object

 """
 try:
 from specutils import Spectrum1D
 except:
 from .spectrum1d import Spectrum1D

 if self.wavelength is None:
 raise ValueError('wavelength is None')
 if self.wavelength_unit is None:
 raise ValueError('wavelength_unit is None')
 if self.flux is None:
 raise ValueError('flux is None')
 if self.flux_unit is None:
 raise ValueError('flux_unit is None')

 wave = self.wavelength * self.wavelength_unit
 flux = self.flux * self.flux_unit
 return Spectrum1D.from_array(wave, flux)

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 All modules for which code is available

		pyhrs._astropy_init

		pyhrs.calibrationframes

		pyhrs.hrsmodel

		pyhrs.hrsorder

		pyhrs.hrsprocess

		pyhrs.hrstools

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_modules/pyhrs/hrsprocess.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 		Module code »

 Source code for pyhrs.hrsprocess

Licensed under a 3-clause BSD style license - see LICENSE.rst
This module implements the base processing for HRS data
from __future__ import (absolute_import, division, print_function,
 unicode_literals)

import os
import numpy as np
from astropy.extern import six

from astropy import units as u

import ccdproc

__all__ = ['ccd_process', 'create_masterbias', 'hrs_process', 'blue_process',
 'red_process']

[docs]def ccd_process(ccd, oscan=None, trim=None, error=False, masterbias=None,
 bad_pixel_mask=None, gain=None, rdnoise=None,
 oscan_median=True, oscan_model=None):
 """Perform basic processing on ccd data.

 The following steps can be included:
 * overscan correction
 * trimming of the image
 * create edeviation frame
 * gain correction
 * add a mask to the data
 * subtraction of master bias

 The task returns a processed `ccdproc.CCDData` object.

 Parameters

 ccd: `ccdproc.CCDData`
 Frame to be reduced

 oscan: None, str, or, `~ccdproc.ccddata.CCDData`
 For no overscan correction, set to None. Otherwise proivde a region
 of `ccd` from which the overscan is extracted, using the FITS
 conventions for index order and index start, or a
 slice from `ccd` that contains the overscan.

 trim: None or str
 For no trim correction, set to None. Otherwise proivde a region
 of `ccd` from which the image should be trimmed, using the FITS
 conventions for index order and index start.

 error: boolean
 If True, create an uncertainty array for ccd

 masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData`
 A materbias frame to be subtracted from ccd.

 bad_pixel_mask: None or `~numpy.ndarray`
 A bad pixel mask for the data. The bad pixel mask should be in given
 such that bad pixels havea value of 1 and good pixels a value of 0.

 gain: None or `~astropy.Quantity`
 Gain value to multiple the image by to convert to electrons

 rdnoise: None or `~astropy.Quantity`
 Read noise for the observations. The read noise should be in
 `~astropy.units.electron`

 oscan_median : bool, optional
 If true, takes the median of each line. Otherwise, uses the mean

 oscan_model : `~astropy.modeling.Model`, optional
 Model to fit to the data. If None, returns the values calculated
 by the median or the mean.

 Returns

 ccd: `ccdproc.CCDData`
 Reduded ccd

 Examples

 1. To overscan, trim, and gain correct a data set:

 >>> import numpy as np
 >>> from astropy import units as u
 >>> from hrsprocess import ccd_process
 >>> ccd = CCDData(np.ones([100, 100]), unit=u.adu)
 >>> nccd = ccd_process(ccd, oscan='[1:10,1:100]', trim='[10:100, 1,100]',
 error=False, gain=2.0*u.electron/u.adu)

 """
 # make a copy of the object
 nccd = ccd.copy()

 # apply the overscan correction
 if isinstance(oscan, ccdproc.CCDData):
 nccd = ccdproc.subtract_overscan(nccd, overscan=oscan,
 median=oscan_median,
 model=oscan_model)
 elif isinstance(oscan, six.string_types):
 nccd = ccdproc.subtract_overscan(nccd, fits_section=oscan,
 median=oscan_median,
 model=oscan_model)
 elif oscan is None:
 pass
 else:
 raise TypeError('oscan is not None, a string, or CCDData object')

 # apply the trim correction
 if isinstance(trim, six.string_types):
 nccd = ccdproc.trim_image(nccd, fits_section=trim)
 elif trim is None:
 pass
 else:
 raise TypeError('trim is not None or a string')

 # create the error frame
 if error and gain is not None and rdnoise is not None:
 nccd = ccdproc.create_deviation(nccd, gain=gain, rdnoise=rdnoise)
 elif error and (gain is None or rdnoise is None):
 raise ValueError(
 'gain and rdnoise must be specified to create error frame')

 # apply the bad pixel mask
 if isinstance(bad_pixel_mask, np.ndarray):
 nccd.mask = bad_pixel_mask
 elif bad_pixel_mask is None:
 pass
 else:
 raise TypeError('bad_pixel_mask is not None or numpy.ndarray')

 # apply the gain correction
 if isinstance(gain, u.quantity.Quantity):
 nccd = ccdproc.gain_correct(nccd, gain)
 elif gain is None:
 pass
 else:
 raise TypeError('gain is not None or astropy.Quantity')

 # test subtracting the master bias
 if isinstance(masterbias, ccdproc.CCDData):
 nccd = nccd.subtract(masterbias)
 elif isinstance(masterbias, np.ndarray):
 nccd.data = nccd.data - masterbias
 elif masterbias is None:
 pass
 else:
 raise TypeError(
 'masterbias is not None, numpy.ndarray, or a CCDData object')

 return nccd

[docs]def hrs_process(image_name, ampsec=[], oscansec=[], trimsec=[],
 masterbias=None, error=False, bad_pixel_mask=None, flip=False,
 rdnoise=None, oscan_median=True, oscan_model=None):
 """Processing required for HRS observations. If the images have multiple
 amps, then this will process each part of the image and recombine them
 into for the final results

 Parameters

 image_name: str
 Name of file to be processed

 ampsec: list
 List of ampsections. This list should have the same length as the
 number of amps in the data set. The sections should be given
 in the format of fits_sections (see below).

 oscansec: list
 List of overscan sections. This list should have the same length as the
 number of amps in the data set. The sections should be given
 in the format of fits_sections (see below).

 trimsec: list
 List of overscan sections. This list should have the same length as the
 number of amps in the data set. The sections should be given
 in the format of fits_sections (see below).

 error: boolean
 If True, create an uncertainty array for ccd

 masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData`
 A materbias frame to be subtracted from ccd.

 bad_pixel_mask: None or `~numpy.ndarray`
 A bad pixel mask for the data. The bad pixel mask should be in given
 such that bad pixels havea value of 1 and good pixels a value of 0.

 flip: boolean
 If True, the image will be flipped such that the orders run from the
 bottom of the image to the top and the dispersion runs from the left
 to the right.

 rdnoise: None or `~astropy.Quantity`
 Read noise for the observations. The read noise should be in
 `~astropy.units.electron`

 oscan_median : bool, optional
 If true, takes the median of each line. Otherwise, uses the mean

 oscan_model : `~astropy.modeling.Model`, optional
 Model to fit to the data. If None, returns the values calculated
 by the median or the mean.

 Returns

 ccd: `~ccdproc.CCDData`
 Data processed and

 Notes

 The format of the `fits_section` string follow the rules for slices that
 are consistent with the FITS standard (v3) and IRAF usage of keywords like
 TRIMSEC and BIASSEC. Its indexes are one-based, instead of the
 python-standard zero-based, and the first index is the one that increases
 most rapidly as you move through the array in memory order, opposite the
 python ordering.

 The 'fits_section' argument is provided as a convenience for those who are
 processing files that contain TRIMSEC and BIASSEC. The preferred, more
 pythonic, way of specifying the overscan is to do it by indexing the data
 array directly with the `overscan` argument.

 """
 # read in the data
 ccd = ccdproc.CCDData.read(image_name, unit=u.adu)

 try:
 namps = ccd.header['CCDAMPS']
 except KeyError:
 namps = ccd.header['CCDNAMPS']

 # thow errors for the wrong number of amps
 if len(ampsec) != namps:
 raise ValueError('Number of ampsec does not equal number of amps')
 if len(oscansec) != namps:
 raise ValueError('Number of oscansec does not equal number of amps')
 if len(trimsec) != namps:
 raise ValueError('Number of trimsec does not equal number of amps')

 if namps == 1:
 gain = float(ccd.header['gain'].split()[0]) * u.electron / u.adu
 nccd = ccd_process(ccd, oscan=oscansec[0], trim=trimsec[0],
 error=error, masterbias=masterbias,
 bad_pixel_mask=bad_pixel_mask, gain=gain,
 rdnoise=rdnoise, oscan_median=oscan_median,
 oscan_model=oscan_model)
 else:
 ccd_list = []
 xsize = 0
 for i in range(namps):
 cc = ccdproc.trim_image(ccd, fits_section=ampsec[i])

 gain = float(ccd.header['gain'].split()[i]) * u.electron / u.adu
 ncc = ccd_process(cc, oscan=oscansec[i], trim=trimsec[i],
 error=False, masterbias=None, gain=gain,
 bad_pixel_mask=None, rdnoise=rdnoise,
 oscan_median=oscan_median,
 oscan_model=oscan_model)
 xsize = xsize + ncc.shape[1]
 ysize = ncc.shape[0]
 ccd_list.append(ncc)

 # now recombine the processed data
 ncc = ccd_list[0]
 data = np.zeros((ysize, xsize))
 if ncc.mask is not None:
 mask = np.zeros((ysize, xsize))
 else:
 mask = None
 if ncc.uncertainty is not None:
 raise NotImplementedError(
 'Support for uncertainties not implimented yet')
 else:
 uncertainty = None

 x1 = 0
 for i in range(namps):
 x2 = x1 + ccd_list[i].data.shape[1]
 data[:, x1:x2] = ccd_list[i].data
 if mask is not None:
 mask[:, x1:x2] = ccd_list[i].mask
 x1 = x2

 nccd = ccdproc.CCDData(data, unit=ncc.unit, mask=mask,
 uncertainty=uncertainty)
 nccd = ccd_process(nccd, masterbias=masterbias, error=error, gain=None,
 rdnoise=rdnoise, bad_pixel_mask=bad_pixel_mask)

 if flip:
 nccd.data = nccd.data[::-1, ::-1]
 if (nccd.mask is not None):
 nccd.mask = nccd.mask[::-1, ::-1]
 if (nccd.uncertainty is not None):
 raise NotImplementedError(
 'Flipping is not implimented yet for uncertainty')

 return nccd

[docs]def blue_process(infile, masterbias=None, error=False, rdnoise=None):
 """Process a blue frame
 """
 # check to make sure it is a blue file

 # reduce file
 blueamp = ['[1:1050,:]', '[1051:2100,:]']
 bluescan = ['[1:26,:]', '[1025:1050,:]']
 bluetrim = ['[27:1050,:]', '[1:1024,:]']
 ccd = hrs_process(infile, ampsec=blueamp, oscansec=bluescan,
 trimsec=bluetrim, masterbias=masterbias, error=error,
 rdnoise=None, flip=True)
 return ccd

[docs]def red_process(infile, masterbias=None, error=None, rdnoise=None):
 """Process a blue frame
 """
 redamp = ['[1:4122,1:4112]']
 redscan = ['[1:25,1:4112]']
 redtrim = ['[27:4122,1:4112]']
 ccd = hrs_process(infile, ampsec=redamp, oscansec=redscan,
 trimsec=redtrim, masterbias=masterbias, error=error,
 rdnoise=None, flip=False)
 return ccd

def create_masterbias(image_list):
 """Create a master bias frame from a list of images

 Parameters

 image_list: list
 List contain the file names to be processed

 Returns

 masterbias: ccddata.CCDData
 Combine master bias from the biases supplied in image_list

 """
 # determine whether they are red or blue
 if os.path.basename(image_list[0]).startswith('H'):
 func = blue_process
 elif os.path.basename(image_list[0]).startswith('R'):
 func = red_process
 else:
 raise TypeError('These are not standard HRS frames')

 # reduce the files
 ccd_list = []
 for image_name in image_list:
 ccd = func(image_name, masterbias=None, error=False)
 ccd_list.append(ccd)

 # combine the files
 cb = ccdproc.Combiner(ccd_list)
 nccd = cb.median_combine(median_func=np.median)

 return nccd

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_modules/pyhrs/calibrationframes.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 		Module code »

 Source code for pyhrs.calibrationframes

Licensed under a 3-clause BSD style license - see LICENSE.rst
This module implements the handling of different calibration files
from __future__ import (absolute_import, division,# print_function,
 unicode_literals)

import os
import numpy as np
from astropy.extern import six
import warnings

from astropy import units as u
from astropy import modeling as mod
from astropy import stats

from scipy import ndimage as nd

import ccdproc

from .hrsprocess import *
from .hrstools import *
from .hrsmodel import HRSModel
from .hrsorder import HRSOrder

__all__ = ['create_masterbias', 'create_masterflat', 'create_orderframe',
 'wavelength_calibrate_arc', 'wavelength_calibrate_order']

[docs]def create_masterbias(image_list):
 """Create a master bias frame from a list of images

 Parameters

 image_list: list
 List contain the file names to be processed

 Returns

 masterbias: ccddata.CCDData
 Combine master bias from the biases supplied in image_list

 """
 # determine whether they are red or blue
 if os.path.basename(image_list[0]).startswith('H'):
 func = blue_process
 elif os.path.basename(image_list[0]).startswith('R'):
 func = red_process
 else:
 raise TypeError('These are not standard HRS frames')

 # reduce the files
 ccd_list = []
 for image_name in image_list:
 ccd = func(image_name, masterbias=None, error=False)
 ccd_list.append(ccd)

 # combine the files
 cb = ccdproc.Combiner(ccd_list)
 nccd = cb.median_combine(median_func=np.median)

 return nccd

[docs]def create_masterflat(image_list, masterbias=None):
 """Create a master flat frame from a list of images

 Parameters

 image_list: list
 List contain the file names to be processed

 masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData`
 A materbias frame to be subtracted from ccd.

 Returns

 masterflat: ccddata.CCDData
 Combine master flat from the flats supplied in image_list

 """
 # determine whether they are red or blue
 if os.path.basename(image_list[0]).startswith('H'):
 func = blue_process
 elif os.path.basename(image_list[0]).startswith('R'):
 func = red_process
 else:
 raise TypeError('These are not standard HRS frames')

 # reduce the files
 ccd_list = []
 for image_name in image_list:
 ccd = func(image_name, masterbias=masterbias, error=False)
 ccd_list.append(ccd)

 # combine the files
 cb = ccdproc.Combiner(ccd_list)
 nccd = cb.median_combine(median_func=np.median)

 return nccd

[docs]def create_orderframe(data, first_order, xc, detect_kernal, smooth_length=15,
 y_start=0, y_limit=None):
 """Create an order frame from from an observation.

 A one dimensional detect_kernal is correlated with a column in the image. The
 kernal steps through y-space until a match is made. Once a best fit is
 found, the order is extracted to include all pixels that are detected to
 be part of that order. Once all pixels have been extracted, they
 are set to zero in the original frame. The detection kernal is updated
 by the new order detected

 Parameters

 data: ~numpy.ndarray
 An image with the different orders illuminated. Any processing of this
 image should have been performed prior to running `create_orderframe`.

 first_order: int
 The first order to appear in the image starting from the bottom of the
 image

 xc: int
 The x-position to extract a 1-D map of the orders

 detect_kern: ~numpy.ndarray
 The initial detection kernal which have the shape of a single order.

 smooth_length: int
 The length to smooth the images by prior to processing them

 y_start: int
 The initial value to start searching for the first maximum

 y_limit: int
 The limit in y-positions for automatically finding the orders.

 Returns

 order_frame: ~numpy.ndarray
 An image with each of the order identified by their number

 Notes

 Currently no orders are extrcted above y_limit and the code still needs to
 be updated to handle those higher orders

 """
 # set up the arrays needed
 data[data < 0.5 * data.max()] = 0
 sdata = 1.0 * data
 ndata = data[:, xc]
 order_frame = 0.0 * data

 # set up additiona information that we need
 ys, xs = data.shape
 xc = int(0.5 * xs)
 norder = first_order

 if y_limit is None:
 y_limit = ys

 # convolve with the default kernal
 #cdata = np.convolve(ndata, detect_kernal, mode='same')
 #cdata *= (ndata > 0)
 #cdata = nd.filters.maximum_filter(cdata, smooth_length)

 import pylab as pl

 i = y_start
 nlen = len(detect_kernal)
 max_value = sdata.max()
 ndata[:y_start] = -1
 while i < y_limit:
 cdata = np.convolve(ndata, detect_kernal, mode='same')
 # find the highest peak in the convolution area
 y1 = max(0, i)
 y2 = y1 + nlen
 y2 = min(ys - 1, y2)
 yc = cdata[y1:y2].argmax() + y1

 # this is to make sure the two fibers
 # are both contained in the same
 # order
 sy1 = max(0, yc - smooth_length)
 sy2 = min(ys - 1, yc + smooth_length)
 sdata[sy1:sy2, xc] = max_value
 obj, nobj = nd.label(sdata > 0.9 * max_value)
 nobj = obj[yc, xc]
 order_frame += norder * (obj == nobj)

 # first create the new detection kernal
 yarr = np.arange(len(order_frame))
 dy1 = yarr[(order_frame[:,xc]==norder)].min()
 dy2 = yarr[(order_frame[:,xc]==norder)].max()
 detect_kernal = 1.0 * ndata[dy1:dy2]
 nlen = len(detect_kernal)
 smooth_length = max(3, int(0.2*nlen))

 # now remove the order from the data
 data[order_frame==norder] = -1

 # set up the new frame and the place
 # to start measuring from
 ndata = data[:,xc]
 n2 = np.where(ndata > 0)[0][0]
 ndata[0:n2] = -1
 i = n2
 norder += 1

 return order_frame

[docs]def wavelength_calibrate_arc(arc, order_frame, slines, sfluxes, first_order, hrs_model, ws_init, fit_ws, y0=50, wavelength_shift=None, xlimit=1.0, slimit=1.0, wlimit=0.5, min_order=54):
 """Wavelength calibrate an arc spectrum from HRS

 'wavelength_calibrate_order' will be applied to each order in 'order_frame'a
 Once all orders have been processed, it will return an array where the
 wavelength is specified at each x- and y-position.

 Parameters

 arc: ~ccdproc.CCDData
 Arc frame to be calibrated

 order_frame: ~ccdproc.CCDData
 Frame containting the positions of each of the orders

 slines: numpy.ndarray
 wavelengths of known arc lines

 sfluxes: numpy.ndarray
 relative fluxes at those wavelengths

 first_order: int
 First order to be processed

 hrs_model: ~HRSModel
 A model for the spectrograph for the given arc

 ws_init: ~astropy.modeling.model
 A initial model decribe the trasnformation from x-position to
 wavelength

 fit_ws: ~astropy.modeling.fitting
 Method to fit the model

 y0: int
 First row in which to determine the solution

 wavelength_shift: ~astropy.modeling.model or None
 For the row given by y0, this is the correction needed to be applied
 to the model wavelengths to provide a closer match to the observed
 arc.

 npoints: int
 The maximum number of points to bright points to fit.

 xlimit: float
 Maximum shift in line centroid when fitting

 slimit: float
 Minimum scale for line when fitting

 wlimit: float
 Minimum separation in wavelength between peak and line

 """

 #get a list of orders
 o1 = max(order_frame.data[order_frame.data>0].min(),min_order)
 o2 = order_frame.data.max()
 order_arr = np.arange(o1, o2, dtype=int)
 shift_dict={}
 if wavelength_shift is not None:
 shift_dict[first_order] = wavelength_shift
 else:
 shift_dict[first_order] = lambda x: x
 s_func = mod.models.Polynomial1D(2)
 fit_s = mod.fitting.LinearLSQFitter()
 import pylab as pl
 import datetime
 now = datetime.datetime.now

 wdata = 0.0 * arc.data
 edata = 0.0 * arc.data
 print now()
 for i in abs(order_arr-first_order).argsort():

 n_order = order_arr[i]

 #set up the hrs order object
 hrs = HRSOrder(n_order)
 hrs.set_order_from_array(order_frame.data)
 hrs.set_flux_from_array(arc.data, flux_unit=arc.unit)

 #set up the model
 hrs_model.set_order(n_order)

 #set up the initial guess for the solution
 xarr = np.arange(len(arc.data[0]))
 warr = 1e7*hrs_model.get_wavelength(xarr)
 w1_limit = warr.min() - 5
 w2_limit = warr.min() + 5
 j = abs(np.array(shift_dict.keys())-n_order).argmin()
 w_s = shift_dict[shift_dict.keys()[j]](xarr)
 nwarr = warr + w_s
 #check to see if the result is within the boundaries
 #and if not use the first order
 if nwarr.min() > w1_limit and nwarr.max() < w2_limit:
 print 'Using first order', n_order, nwarr.min(), nwarr.max()
 warr += shift_dict[first_order](xarr)
 ws = fit_ws(ws_init, xarr, warr)

 #limit line list to ones in the order
 print n_order, warr.min(), warr.max()
 smask = (slines > warr.min()-5) * (slines < warr.max() + 5)

 #find the calibrated wavelengths
 hrs, nx, nw, nws = wavelength_calibrate_order(hrs, slines[smask], sfluxes[smask], ws, fit_ws, y0=y0, xlimit=xlimit, slimit=slimit, wlimit=wlimit)

 if nx is None: continue

 #determine the wavelength shift
 s = fit_s(s_func, xarr, nws(xarr) - 1e7*hrs_model.get_wavelength(xarr))
 shift_dict[n_order] = s

 wdata[hrs.region] = hrs.wavelength
 edata[hrs.region] = hrs.wavelength_error
 print ' ', now()

 return wdata, edata

[docs]def wavelength_calibrate_order(hrs, slines, sfluxes, ws_init, fit_ws, y0=50, npoints=30, xlimit=1.0, slimit=1.0, wlimit=0.5):
 """Wavelength calibration of a single order from the HRS arc spectra

 The calibration proceeds through following steps:
 1. Curvature due to the optical distortion is removed from the spectra and
 a square representation of the 2D spectra is created. Only integer
 shifts are applied to the data
 2. A model of the spectrograph is created based on the order, camera, and
 xpos offset that are supplied.
 3. In each row of the data, peaks are extracted and matched with a
 line in the atlas of wavelengths that is provided (slines, sflux). For
 the details of the matching process, see the match_arc function.
 4. Once the first set of peaks and lines are matched up, a new solution
 is calculated for the given row. Then the processes of matching
 lines and determining a wavelength solution is repeated. The best
 result from each line is saved.
 5. Using all of the matched lines from all lines, a 'best' solution is
 determined. Everything but the zeroth order parameter of the fit
 is fixed to a slowly varying value based on the overall solution to all
 lines. See fit_solution for more details.
 6. Based on the best solution found, the process is repeated for each
 row but only determing the zeropoint.
 7. Based on the solution found, a wavelength is assigned to each pixel

 Parameters

 hrs: ~HRSOrder
 Object describing a single HRS order. It should already contain the
 defined order and the flux from the arc for that order

 slines: numpy.ndarray
 wavelengths of known arc lines

 sfluxes: numpy.ndarray
 relative fluxes at those wavelengths

 ws_init: ~astropy.modeling.model
 A initial model decribe the trasnformation from x-position to
 wavelength

 fit_ws: ~astropy.modeling.fitting
 Method to fit the model

 y0: int
 First row for determine the solution

 npoints: int
 The maximum number of points to bright points to fit.

 xlimit: float
 Maximum shift in line centroid when fitting

 slimit: float
 Minimum scale for line when fitting

 wlimit: float
 Minimum separation in wavelength between peak and line

 Returns

 hrs: ~HRSOrder
 An HRSOrder with a calibrated wavelength property

 """
 import pickle
 #create the box
 xmax = hrs.region[1].max()
 xmin = 0
 ymax = hrs.region[0].max()
 ymin = hrs.region[0].min()
 ys = ymax-ymin
 xs = xmax-xmin
 data = np.zeros((ys+1,xs+1))
 ydata = np.zeros((ys+1,xs+1))
 coef = np.polyfit(hrs.region[1], hrs.region[0], 3)
 xarr = np.arange(xs+1)
 yarr = np.polyval(coef, xarr)-ymin
 x = hrs.region[1]-xmin
 y = hrs.region[0]-ymin - (np.polyval(coef, x) - ymin - yarr.min()).astype(int)
 data[y,x] = hrs.flux
 pickle.dump(data, open('box_%i.pkl' % hrs.order, 'w'))

 #set the wavelength
 func_order = len(ws_init.parameters)
 warr = ws_init(xarr)

 #match the lines
 y = data[:,int(0.5*len(xarr))]
 y = np.where(y>0)[0]
 nmax = y.max()
 thresh=3

 #find the best solution
 farr = 1.0*data[y0,:]
 farr = farr[::-1]
 mx, mw = match_lines(xarr, farr, slines, sfluxes, ws_init, npoints=npoints,
 xlimit=xlimit, slimit=slimit, wlimit=wlimit)
 ws = iterfit1D(mx, mw, fit_ws, ws_init)

 sol_dict={}
 for y in range(0, nmax, 1):
 farr = 1.0*data[y,:]
 farr = farr[::-1]
 if farr.sum() > 0:
 mx, mw = match_lines(xarr, farr, slines, sfluxes, ws,
 npoints=npoints, xlimit=xlimit, slimit=slimit,
 wlimit=wlimit)
 if len(mx) > func_order:
 nws = iterfit1D(mx, mw, fit_ws, ws_init, thresh=thresh)
 sol_dict[y] = [mx, mw, nws]
 if len(sol_dict)==0: return hrs, None, None, None
 pickle.dump(sol_dict, open('sol_%i.pkl' % hrs.order, 'w'))
 sol_dict = fit_wavelength_solution(sol_dict)

 #update the wavelength values
 wdata = 0.0*data
 edata = 0.0*data
 for y in sol_dict:
 mx, mw, nws = sol_dict[y]
 wdata[y,:] = nws(xarr.max() - xarr)
 rms = stats.median_absolute_deviation(mw-nws(mx)) / 0.6745
 edata[y,:] += rms

 x = hrs.region[1]
 y = hrs.region[0] - ymin - (np.polyval(coef, hrs.region[1]) - ymin - yarr.min()).astype(int)
 hrs.wavelength = wdata[y,x]
 hrs.wavelength_error = edata[y,x]

 #in case no solution found for y0
 try:
 yt = sol_dict[y0][0]
 except KeyError:
 y0 = sol_dict.keys()[0]

 return hrs, sol_dict[y0][0], sol_dict[y0][1], sol_dict[y0][2]

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_modules/pyhrs/hrstools.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 		Module code »

 Source code for pyhrs.hrstools

Licensed under a 3-clause BSD style license - see LICENSE.rst
This module implements the tools used to process HRS data
#from __future__ import (absolute_import, division, print_function, unicode_literals)

import numpy as np
from scipy import signal
from astropy import stats
from astropy import modeling as mod

__all__ = ['background', 'fit_order', 'normalize_image', 'xcross_fit', 'ncor',
 'iterfit1D', 'calc_weights', 'match_lines', 'fit_wavelength_solution']

[docs]def background(b_arr, niter=3):
 """Determine the background for an array

 Parameters

 b_arr: numpy.ndarray
 Array for the determination of the background

 niter: int
 Number of iterations for sigma clipping

 Returns

 bkgrd: float
 median background value after sigma clipping

 bkstd: float
 Estimated standard deviation based on the median
 absolute deviation

 """
 cl_arr = stats.sigma_clip(b_arr, iters=niter, cenfunc=np.ma.median,
 varfunc=stats.median_absolute_deviation)
 return np.ma.median(cl_arr), 1.48 * stats.median_absolute_deviation(cl_arr)

[docs]def fit_order(data, detect_kernal, xc, order=3, ratio=0.5):
 """Given an array and an overlapping detect_kernal,
 determine two polynomials that would outline the top
 and bottom of the order

 Parameters

 data: ~numpy.ndarray
 Image of the orders

 detect_kernal: ~numpy.ndarray
 An array aligned with data that has the approximate
 outline of the order. The data shoud have a value
 of one for where the order is.

 xc: int
 x-position to determine the width of the order

 order: int
 Order to use for the polynomial fit.

 ratio: float
 Limit at which to determine an order. It is the
 ratio of the flux in the pixle to the flux at the
 peak.

 Returns

 y_l: `~astropy.modeling.models.Polynomial1D`
 A polynomial that outlines the bottom of the order

 y_u: `~astropy.modeling.models.Polynomial1D`
 A polynomial that outlines the top of the order

 """

 # first thing to do is determine shape of the order
 sdata = data * detect_kernal
 m_init = mod.models.Polynomial1D(order)
 y, x = np.indices(sdata.shape)
 #g_fit = mod.fitting.LevMarLSQFitter()
 g_fit = mod.fitting.LinearLSQFitter()
 mask = (sdata > 0)
 m = g_fit(m_init, x[mask], y[mask])

 # now the second thing to do is to determine the top and bottom of the
 # order
 y = int(m(xc))
 n_arr = data[:, xc]
 y1 = y - np.where(n_arr[:y] < ratio * data[y, xc])[0].max()
 y2 = np.where(n_arr[y:] < ratio * data[y, xc])[0].min()
 y_u = m.copy()
 y_l = m.copy()

 y_l.parameters[0] = y_l.parameters[0] - y1
 y_u.parameters[0] = y_u.parameters[0] + y2

 return y_l, y_u

[docs]def normalize_image(data, func_init, mask,
 fitter=mod.fitting.LinearLSQFitter,
 normalize=True):
 """Normalize an HRS image.

 The tasks takes an image and will fit a function to the overall
 shape to it. The task will only fit to the illuminated orders
 and if an order_frame is provided it will use that to identify the
 areas it should fit to. Otherwise, it will filter the image such that
 only the maximum areas are fit.

 This function will then be divided out of the image and return
 a normalized image if requested.

 Parameters

 data: numpy.ndarray
 Data to be normalized

 mask: numpy.ndarray
 If a numpy.ndarray, this will be used to determine areas
 to be used for the fit.

 func_init: ~astropy.modeling.models
 Function to fit to the image

 fitter: ~astropy.modeling.fitting
 Fitter function

 normalize: boolean
 If normalize is True, it will return data normalized by the
 function fit to it. If normalize is False, it will return
 an array representing the function fit to data.

 Returns

 ndata: numpy.ndarray
 If normalize is True, it will return data normalized by the
 function fit to it. If normalize is False, it will return
 an array representing the function fit to data.

 """

 if isinstance(mask, np.ndarray):
 if mask.shape != data.shape:
 raise ValueError('mask is not the same shape as data')
 else:
 raise TypeError('mask is not None or an numpy.ndarray')

 ys, xs = data.shape
 if isinstance(fitter, mod.fitting._FitterMeta):
 g_fit = fitter()
 else:
 raise TypeError('fitter is not a valid astropy.modeling.fitting')

 if not hasattr(func_init, 'n_inputs'):
 raise TypeError('func_init is not a valid astropy.modeling.model')

 if func_init.n_inputs == 2:
 y, x = np.indices((ys, xs))
 f = g_fit(func_init, x[mask], y[mask], data[mask])
 ndata = f(x, y)
 elif func_init.n_inputs == 1:
 ndata = 0.0 * data
 xarr = np.arange(xs)
 yarr = np.arange(ys)
 for i in range(xs):
 f = g_fit(func_init, yarr[mask[:, i]], data[:, i][mask[:, i]])
 ndata[:, i] = f(yarr)

 if normalize:
 return data / ndata * ndata.mean()
 else:
 return ndata

[docs]def fit_wavelength_solution(sol_dict):
 """Determine the best fit solution and re-fit each line with that solution

 The following steps are used to determine the best wavelength solution:
 1. The coefficients of the solution to each row are fit by a line
 2. The coefficients for each row are then replaced by the best-fit values
 3. The wavelenght zeropoint is then re-calculated for each row

 Parameters:

 sol_dict: dict
 A dictionary where the key is the y-position of each row and the value
 is a list that containts an array of x values of peaks, the
 corresponding wavelength array of the peaks, and a
 `~astropy.modeling.model` that transforms between the x positions
 and wavelengths

 Returns: dict

 sol_dict: dict
 An updating dictionary with the new wavelength solution for each row

 """
 #determinethe quality of each solution
 weights = np.zeros(len(sol_dict))
 yarr = np.zeros(len(sol_dict))
 ncoef = len(sol_dict[sol_dict.keys()[0]][2].parameters)
 coef_list = []
 for i in range(ncoef):
 coef_list.append(np.zeros(len(sol_dict)))

 #populate the coeffient list with values
 for i, y in enumerate(sol_dict):
 yarr[i] = y
 mx, mw, ws = sol_dict[y]
 weights[i] = stats.median_absolute_deviation(ws(mx)-mw) / 0.6745
 for j, p in enumerate(ws.parameters):
 coef_list[j][i] = p

 #fit each coefficient with a value
 coef_sol = []
 for coef in coef_list:
 fit_c = mod.fitting.LinearLSQFitter()
 c_init = mod.models.Polynomial1D(1)
 mask = (weights < 5 * np.median(weights))
 c = iterfit1D(yarr[mask], coef[mask], fit_c, c_init, niter=7)
 coef_sol.append(c)

 #refit with only allowing zeropoint to change
 for i, y in enumerate(sol_dict):
 mx, mw, ws = sol_dict[y]
 for j, n in enumerate(ws.param_names):
 c = coef_sol[j]
 ws.parameters[j] = c(y)

 weights = calc_weights(mx, mw, ws)
 dw = np.average(mw - ws(mx), weights=weights)
 ws.c0 = ws.c0 + dw
 sol_dict[y] = [mx, mw, ws]

 return sol_dict

[docs]def iterfit1D(x, y, fitter, model, yerr=None, thresh=5, niter=5):
 """Iteratively fit a function.

 Outlyiers will have a reduced weight in the fit, and then
 the fit will be repeated niter times to determine the
 best fits

 Parameters

 x: numpy.ndarray
 Arrray of x-values

 y: numpy.ndarray
 Arrray of y-values

 fitter: ~astropy.modeling.fitting
 Method to fit the model

 model: ~astropy.modeling.model
 A model to be fit

 Returns

 m: ~astropy.modeling.model
 Model fit after reducing the weight of outlyiers

 """
 if yerr is None: yerr = np.ones_like(y)
 weights = np.ones_like(x)

 for i in range(niter):
 m = fitter(model, x, y, weights=weights)
 weights = calc_weights(x, y, m, yerr)

 return m

[docs]def calc_weights(x, y, m, yerr=None):
 """Calculate weights for each value based on deviation from best fit model

 Parameters

 x: numpy.ndarray
 Arrray of x-values

 y: numpy.ndarray
 Arrray of y-values

 model: ~astropy.modeling.model
 A model to be fit

 yerr: numpy.ndarray
 [Optional] Array of uncertainties for the y-value

 Returns

 weights: numpy.ndarray
 Weights for each parameter

 """
 if yerr is None: yerr = np.ones_like(y)
 r = (y - m(x))/yerr
 s = np.median(abs(r - np.median(r))) / 0.6745
 biweight = lambda x: ((1.0 - x ** 2) ** 2.0) ** 0.5
 if s!=0:
 weights = 1.0/biweight(r / s)
 else:
 weights = np.ones(len(x))
 return weights

[docs]def ncor(x, y):
 """Calculate the normalized correlation of two arrays

 Parameters

 x: numpy.ndarray
 Arrray of x-values

 y: numpy.ndarray
 Arrray of y-values

 Returns

 ncor: float
 Normalize correctation value for two arrays

 """
 d=np.correlate(x,x)*np.correlate(y,y)
 if d<=0: return 0
 return np.correlate(x,y)/d**0.5

[docs]def xcross_fit(warr, farr, sw_arr, sf_arr, dw = 1.0, nw=100):
 """Calculate a zeropoint shift between the observed arc
 and the line list of values

 Parameters

 warr: numpy.ndarray
 Estimated wavelength for arc

 farr: numpy.ndarray
 Flux at each arc position

 sw_arr: numpy.ndarray
 Wavelength of known lines

 sf_arr: numpy.ndarray
 Flux of known lines

 dw: float
 Value to search over. The search will be done from -dw to +dw

 nw: int
 Number of steps in the search

 Returns

 warr: numpy.ndarray
 Wavelength after correcting for shift from fiducial values

 """
 dw_arr = np.arange(-dw, dw, float(dw)/nw)
 cc_arr = 0.0 * dw_arr
 for i, w in enumerate(dw_arr):
 nsf_arr = np.interp(warr+w, sw_arr, sf_arr)
 cc_arr[i] = ncor(farr, nsf_arr)

 j = cc_arr.argmax()
 return warr+dw_arr[j]

def cross_match_arc(xarr, farr, sw, sf, ws, rw=10, dw=2.0, dres = 0.0001,
 npoints=20, xlimit=1.0, slimit=1.0):
 """Match lines in the spectra with specific wavleengths

 Match lines works by first identify the position of the brightest
 line in the image, fitting the line, and assigning wavelengths
 base on the match to the closest strong line.

 Parameters

 xarr: numpy.ndarray
 pixel positions

 farr: numpy.ndarray
 flux values at xarr positions

 sw: numpy.ndarray
 wavelengths of known arc lines

 sf: numpy.ndarray
 relative fluxes at those wavelengths

 ws: function
 Function converting xarr into wavelengths. It should be
 defined such that wavelength = ws(xarr)

 rw: float
 Size of wavelength region to extract around peak

 dw: float
 Maximum wavelength shift to search over

 dres: float
 Sampling for creating the artificial spectra

 npoints: int
 The maximum number of points to bright points to fit.

 xlimit: float
 Maximum shift in line centroid when fitting

 slimit: float
 Minimum scale for line when fitting

 Returns

 warr: numpy.ndarray
 Wavelength values for each xarr position

 """
 fit_g = mod.fitting.LevMarLSQFitter()
 #flattenthe fluxes
 farr = farr - np.median(farr)

 # detect the lines in the image
 xp = signal.find_peaks_cwt(farr, np.array([3]))
 if xp==[]: return None, None, None, None

 #set up the arrays
 xp = np.array(xp)
 fp = farr[xp]
 wp = ws(xp)
 warr = ws(xarr)
 mx = []
 mw = []

 sw_arr = np.arange(wp.min() - rw, wp.max() + rw, dres)
 sf_arr = 0.0 * sw_arr
 smask = (sw > wp.min() - rw) * (sw < wp.max() + rw)
 for w in sw[smask]:
 k = np.where(abs(sw_arr-w) < dres)
 sf_arr[k] += 1.0
 #smooth the artifical spectra
 sf_arr = np.convolve(sf_arr, np.ones(3/0.001), mode='same')

 all_mask = 0.0 * warr
 # find the brightest npoint lines in the image and match the wavelengths
 import datetime
 for i in fp.argsort()[::-1][:npoints]:
 mask = (warr > wp[i] - rw) * (warr < wp[i]+rw)
 smask = (sw_arr > wp[i] - rw) * (sw_arr < wp[i]+rw)

 warr[mask] = xcross_fit(warr[mask], farr[mask], sw_arr[smask],
 sf_arr[smask], dw=dw, nw=10)

 #fit the best fitting line
 g = mod.models.Gaussian1D(amplitude=farr[mask].max(), mean=xp[i],
 stddev=0.5)
 g = fit_g(g, xarr[mask], farr[mask])
 x=g.mean.value
 w_x = np.interp(x, xarr[mask], warr[mask])
 s=3*g.stddev.value*ws.c1
 j = abs(sw - w_x).argmin()

 #reject things that are not good fits or are too narrow
 if abs(x-xp[i]) < xlimit and g.stddev.value > slimit:
 mx.append(x)
 mw.append(sw[j])
 else:
 pass

 all_mask[mask] += 1

 return warr, (all_mask>0), mx, mw

[docs]def match_lines(xarr, farr, sw, sf, ws, rw=5, npoints=20, xlimit=1.0, slimit=1.0,
 wlimit=1.0):
 """Match lines in the spectra with specific wavleengths

 Match lines works by finding the closest peak based on the x-position
 transformed by ws that is within wlimit of a known line.

 Parameters

 xarr: numpy.ndarray
 pixel positions

 farr: numpy.ndarray
 flux values at xarr positions

 sw: numpy.ndarray
 wavelengths of known arc lines

 sf: numpy.ndarray
 relative fluxes at those wavelengths

 ws: function
 Function converting xarr into wavelengths. It should be
 defined such that wavelength = ws(xarr)

 rw: float
 Radius around peak to extract for fitting the center

 npoints: int
 The maximum number of points to bright points to fit.

 xlimit: float
 Maximum shift in line centroid when fitting

 slimit: float
 Minimum scale for line when fitting

 wlimit: float
 Minimum separation in wavelength between peak and line

 Returns

 mx: numpy.ndarray
 x-position for matched lines

 mw: numpy.ndarray
 Wavelength position for matched lines

 """

 fit_g = mod.fitting.LevMarLSQFitter()
 #flattenthe fluxes
 farr = farr - np.median(farr)

 # detect the lines in the image
 xp = signal.find_peaks_cwt(farr, np.array([3]))
 if xp==[]: return [], []

 #set up the arrays
 xp = np.array(xp)
 fp = farr[xp]
 wp = ws(xp)
 warr = ws(xarr)
 mx = []
 mw = []

 for i in fp.argsort()[::-1][0:npoints]:
 gmask = abs(xarr-xp[i]) < rw
 g = mod.models.Gaussian1D(amplitude=farr[gmask].max(), mean=xp[i],
 stddev=0.5)
 g = fit_g(g, xarr[gmask], farr[gmask])
 x=g.mean.value
 if abs(x-xp[i]) < xlimit and g.stddev.value > slimit:
 w = ws(x)
 mask = abs(sw-w) < wlimit
 l = sw[mask]
 if len(l)==1:
 mx.append(x)
 mw.append(sw[mask][0])
 return mx, mw

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_modules/pyhrs/_astropy_init.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

 		Module code »

 Source code for pyhrs._astropy_init

Licensed under a 3-clause BSD style license - see LICENSE.rst

__all__ = ['__version__', '__githash__', 'test']

this indicates whether or not we are in the package's setup.py
try:
 _ASTROPY_SETUP_
except NameError:
 from sys import version_info
 if version_info[0] >= 3:
 import builtins
 else:
 import __builtin__ as builtins
 builtins._ASTROPY_SETUP_ = False

try:
 from .version import version as __version__
except ImportError:
 __version__ = ''
try:
 from .version import githash as __githash__
except ImportError:
 __githash__ = ''

set up the test command
def _get_test_runner():
 import os
 from astropy.tests.helper import TestRunner
 return TestRunner(os.path.dirname(__file__))

[docs]def test(package=None, test_path=None, args=None, plugins=None,
 verbose=False, pastebin=None, remote_data=False, pep8=False,
 pdb=False, coverage=False, open_files=False, **kwargs):
 """
 Run the tests using `py.test <http://pytest.org/latest>`__. A proper set
 of arguments is constructed and passed to `pytest.main`_.

 .. _py.test: http://pytest.org/latest/
 .. _pytest.main: http://pytest.org/latest/builtin.html#pytest.main

 Parameters

 package : str, optional
 The name of a specific package to test, e.g. 'io.fits' or 'utils'.
 If nothing is specified all default tests are run.

 test_path : str, optional
 Specify location to test by path. May be a single file or
 directory. Must be specified absolutely or relative to the
 calling directory.

 args : str, optional
 Additional arguments to be passed to pytest.main_ in the ``args``
 keyword argument.

 plugins : list, optional
 Plugins to be passed to pytest.main_ in the ``plugins`` keyword
 argument.

 verbose : bool, optional
 Convenience option to turn on verbose output from py.test_. Passing
 True is the same as specifying ``'-v'`` in ``args``.

 pastebin : {'failed','all',None}, optional
 Convenience option for turning on py.test_ pastebin output. Set to
 ``'failed'`` to upload info for failed tests, or ``'all'`` to upload
 info for all tests.

 remote_data : bool, optional
 Controls whether to run tests marked with @remote_data. These
 tests use online data and are not run by default. Set to True to
 run these tests.

 pep8 : bool, optional
 Turn on PEP8 checking via the `pytest-pep8 plugin
 <http://pypi.python.org/pypi/pytest-pep8>`_ and disable normal
 tests. Same as specifying ``'--pep8 -k pep8'`` in ``args``.

 pdb : bool, optional
 Turn on PDB post-mortem analysis for failing tests. Same as
 specifying ``'--pdb'`` in ``args``.

 coverage : bool, optional
 Generate a test coverage report. The result will be placed in
 the directory htmlcov.

 open_files : bool, optional
 Fail when any tests leave files open. Off by default, because
 this adds extra run time to the test suite. Works only on
 platforms with a working ``lsof`` command.

 parallel : int, optional
 When provided, run the tests in parallel on the specified
 number of CPUs. If parallel is negative, it will use the all
 the cores on the machine. Requires the
 `pytest-xdist <https://pypi.python.org/pypi/pytest-xdist>`_ plugin
 installed. Only available when using Astropy 0.3 or later.

 kwargs
 Any additional keywords passed into this function will be passed
 on to the astropy test runner. This allows use of test-related
 functionality implemented in later versions of astropy without
 explicitly updating the package template.

 """
 test_runner = _get_test_runner()
 return test_runner.run_tests(
 package=package, test_path=test_path, args=args,
 plugins=plugins, verbose=verbose, pastebin=pastebin,
 remote_data=remote_data, pep8=pep8, pdb=pdb,
 coverage=coverage, open_files=open_files, **kwargs)

if not _ASTROPY_SETUP_:
 import os
 from warnings import warn
 from astropy import config

 # add these here so we only need to cleanup the namespace at the end
 config_dir = None

 if not os.environ.get('ASTROPY_SKIP_CONFIG_UPDATE', False):
 config_dir = os.path.dirname(__file__)
 config_template = os.path.join(config_dir, __package__ + ".cfg")
 if os.path.isfile(config_template):
 try:
 config.configuration.update_default_config(
 __package__, config_dir, version=__version__)
 except TypeError as orig_error:
 try:
 config.configuration.update_default_config(
 __package__, config_dir)
 except config.configuration.ConfigurationDefaultMissingError as e:
 wmsg = (e.args[0] + " Cannot install default profile. If you are "
 "importing from source, this is expected.")
 warn(config.configuration.ConfigurationDefaultMissingWarning(wmsg))
 del e
 except:
 raise orig_error

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

pyhrs/hrsorder.html

 Navigation

 		
 index

 		
 modules |

 		pyhrs v0.0.dev126 »

HRSORDER

HRSOrder is a class describing a single echelle order.

An HRSorder object can be initiated by

>>> from pyhrs.hrsorder import HRSOrder
>>> h = HRSOrder(order = 63)

Properties of HRSOrder

The two main properties of HRSOrder are the order and the region. The
region is a list of pixels in the image that are included in the order.
Based on the region, additional properties can be derived included the flux

of each of the pixels and the wavelength for each of the pixels.

Defining a Region

The HRSOrder.region is defined by the user and passed to HRSOrder object.
The region is defined such that it should be a list, tuple, or
ndarray [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]. It should have two elements corresponding to the two
dimensions of the image and follow the numpy convention for ordering of the
axis.

		The region can be set by directly:

		>>> h.region = [(3,3,3,4,4,4,5,5,5), (1,2,3,1,2,3,1,2,3)]

If an image that defines the order already exists, then numpy.where [http://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html#numpy.where] can be
used to set the order region

>>> from astropy.io import fits
>>> order_image = fits.open('HRDET_HR_Order.fits')
>>> h.region = np.where(order_image.data==h.order)

Likewise, if the order is defined some other manner, the region can be defined
in a similar way using the same syntax.

Extracting the flux

Once the region, the flux for the order can be easily set from the image array. Simple
pass the data to HRSOrder.set_flux_from_array and the flux will be set for each of the
pixels in the region.

>>> from astropy import units as u
>>> data_image = fits.open('R201411140020.fits')
>>> h.set_flux_from_array(data_image.data, flux_unit=u.electron)

The flux will now be accessible and only flux from pixels from region will be extracted.
One the wavelength is set, a 1-D array can be extracted from the data using:

>>> spectrum = h.extract_spectrum()

This will return a Spectrum1D object that will be a one-dimenionsal
representation of the order with wavelength and flux propertiers.

Setting the Wavelength

The wavelength can be set in two different ways. If an array exists with wavelength specified
as a function of position, then the wavelength can be extracted in the same was as the flux:

>>> wave _image = fits.open('HRDET_HR_Wavelength.fits')
>>> h.set_wavelength_from_array(wave_image.data, wavelength_unit=u.Angstrom)

The other way that the wavelength can be set is via a model. The model can either be a 1-D or
2-D model, but it should be a callable function of either x or x and y that returns a wavelength
value.

>>> from hrsmodel import HRSModel
>>> hrs = HRSModel(order=63, camera_name='hrdet')
>>> h.set_wavelength_from_model(hrs.get_wavelength, h.region[1], wavelength_unit=u.Angstrom)

For either case, each pixel coordinate in region will have a coresponding wavelength.

 © Copyright 2015, Steve Crawford.
 Last updated on 31 Mar 2015.
 Created using Sphinx 1.2.2.

_images/inheritance-1e840babb5ab5bd83da68d321fbe2496cfd0eb7a.png
HRSOrder

ccd || Detector

ﬁ

:_] Spectrograph |——+f HRSModel

Optics /

sit

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up.png

_static/plus.png

